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We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows.
We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate
Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow,
analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of
turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number.
Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the
same phase-space dynamics.
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Recent years have seen significant advances in our
understanding of the transition to turbulence in wall-
bounded shear flows. In simple geometries, like flow in
a pipe or a channel, close to the transition threshold, a
finite-amplitude perturbation develops into a localized
turbulent patch (a “puff” in pipe flow) that exists as an
independent entity [1–8]. Experiments [9,10] and numeri-
cal simulations [11–13] have shown that the localized
patches of turbulence can spontaneously disappear (rela-
minarize) or split into two. The rates of these competing
processes depend strongly on the Reynolds number: at
relatively low Reynolds numbers it is much more probable
for a puff to decay than to split, while the opposite is true at
higher Reynolds numbers. The point where the two
probabilities are equal marks the transition to a sustained
turbulence [10], and the turbulence below this threshold
may consist of long-lived chaotic transients [14]. The
transition to turbulence in wall-bounded flows is thus
intimately related to the process of relaminarization, where
turbulent dynamics suddenly collapse to a much simpler,
typically linearly stable, laminar state. Such events have
been explained by dynamical systems theory as the escape
from a chaotic saddle in state space with a constant (time
independent) rate of escape [15–19]. At higher Reynolds
numbers, spatially local relaminarization attempts [20,21]
can be the source of intermittency in turbulent flows.
In contrast, stationary isotropic turbulence, which can be

thought of as a turbulent flow far away from boundaries
[22], is believed to exhibit much simpler dynamics: its
motion is turbulent for all Reynolds numbers and there is
no actual transition. In this Letter we report an unexpected
connection between these two fields. We perform direct
numerical simulations (DNS) of stationary isotropic turbu-
lence at low Reynolds numbers and observe sudden
breakdowns of the turbulent dynamics in favor of a much
simpler state. Similar observations have been made in
connection to symmetry breaking in isotropic turbulence

[23] and in magnetohydrodynamic flows subject to elec-
trical forcing [24]. We study the nature of this process and
show that it is analogous to the relaminarization events in
wall-bounded parallel shear flows. We find that forced
isotropic turbulence at relatively low Reynolds numbers is
transient and the rate of its collapse is constant in time,
resulting in exponentially distributed lifetimes of the
turbulent state similar to pipe [9,10,13,17] and plane
Couette flow [11,25,26].
We perform direct numerical simulations of the incom-

pressible Navier-Stokes equations

∂tu ¼ −∇P − u ·∇uþ νΔuþ f ; ð1Þ

∇ · u ¼ 0; ð2Þ

where u denotes the velocity field, f is an external force, ν
is the kinematic viscosity, P is the pressure, and we set the
density to unity. These equations were solved numerically
using the standard fully dealiased pseudospectral method
[27] on a 3D periodic domain of length Lbox ¼ 2π with
the smallest wave number being kmin ¼ 2π=Lbox ¼ 1.
All simulations are well resolved, using 323 collocation
points and satisfying kmaxη ≥ 1.82, where η denotes the
Kolmogorov dissipation scale.
The system is forced at large scales by a negative

damping f defined as

f̂ ðk; tÞ ¼ ðεW=2EfÞûðk; tÞ; for 0 < jkj < kf;

¼ 0; otherwise: ð3Þ

Here, f̂ ðk; tÞ is the Fourier transform of the forcing, ûðk; tÞ
is the Fourier transform of the velocity field uðx; tÞ, Ef is
the total energy contained in the forcing band, and kf ¼ 2.5
is the highest wave number forced. Normalizing the energy
input by Ef ensures that the energy injection rate is
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εW ¼ const; here we choose εW ¼ 0.1. This forcing pro-
vides an energy input that does not prefer any particular
direction and has a complicated, time-dependent spatial
profile; note that kf ¼ 2.5 corresponds to 80 possible wave
vectors and thus 80 different velocity field modes are being
forced. It is commonly used in numerical investigations of
homogeneous isotropic turbulence [28–34], the prime
example being the series of high-resolution simulations
of Kaneda et al. [35].
The initial conditions for the velocity with a prescribed

energy spectrum are constructed by assigning a Gaussian
random vector to each point in space. The resulting field is
subsequently Fourier transformed and rescaled according
to the desired energy spectrum in the form

EðkÞ ¼ 0.001702k4e−2ðk=5Þ2 : ð4Þ

Further details of the numerical method, validation, and
benchmarking of the code can be found in Ref. [27].
The simulations are evolved for 1271 initial large-eddy

turnover times t0 ¼ L=U, where U denotes the initial rms
velocity and L is the initial integral length scale; t0 ¼ 0.78
in simulation units. The parameter that is varied in our
simulations is the viscosity ν, and we present the results in
terms of a system-scale Reynolds number Re ¼ L4=3

boxε
1=3
W =ν

that is changed from 53.80 to 97.82 for different simu-
lations; in each individual run, Re is kept constant during
the whole simulation. The corresponding values of the
Taylor-Reynolds number and further simulation details are
given in Supplemental Material [36].
As mentioned above, the form of the forcing term that we

employ here [Eq. (3)] is routinely used in DNS of isotropic
turbulence as its complicated spatial form would seem to
guarantee that the system is turbulent at any Reynolds
number larger than unity. Indeed, even at sufficiently low
Reynolds numbers, we observe that our simulations reach a
turbulent stationary state, where the energy injection is
balanced by the average dissipation and there is motion at
all length scales. Surprisingly, however, after staying in this
steady state for a long time, the system exhibits a transition
to a different state, as shown, for example, in Fig. 1 for
Re ¼ 76.86. There, we plot the total energy of the system
EðtÞ ¼ R kmax

kmin
dkEðk; tÞ and the energy content of the small

scales E0ðtÞ ¼ R kmax
k>kmin

dkEðk; tÞ as a function of time; the
energy content at a particular length scale is Eðk; tÞ ¼
jûðk; tÞj2=2 and the largest scale in the system corresponds
to kmin ¼ 2π=Lbox ¼ 1.
As Fig. 1 demonstrates, turbulent dynamics persists until

about t=t0 ≈ 240. After that, the total energy becomes
constant and the small-scale fluctuations in the kinetic
energy produced by the characteristic turbulent cascade
process suddenly disappear. This implies that for t=t0 >
240 the kinetic energy is confined to the largest scale of the
system and no nonlinear transfer exciting the smaller scales

takes place. The system thus transitions from a turbulent to
a large-scale “laminar” state.
The existence of such a state can be understood if one

considers a model velocity field with ux ∼ cosðyÞ and all
other components of the velocity being zero. This flow
profile is similar to a simple shear flow: it satisfies the
incompressibility condition, it does not produce any pres-
sure gradient in the system, and the nonlinear term vanishes
exactly for this profile. It is, therefore, an exact solution of
the equations ofmotion (1) and (2), with itsmagnitude being
set by the injection rate εW and the kinematic viscosity ν. In
general, one can construct many exact solutions of the
Navier-Stokes equations with k ¼ 1, similar to the model
profile discussed above, for which the nonlinear term
vanishes. What is surprising, however, is that this self-
organized large-scale state is dynamically connected to the
isotropic turbulence at sufficiently low Reynolds numbers.
When the system selects this self-organized state, it stays

there for as long as our simulations continue. Together with
the fact that this state is dynamically selected by the system,
it seems to imply that this state is linearly stable. In order to
further probe this statement, we have performed exploratory
simulations where we have perturbed the self-organized
state with random perturbations and observed their evolu-
tion. For sufficiently small amplitude of the perturbations,
simulations always returned to the self-organized state,
while for larger perturbations the system became turbulent,
as shown in Fig. 2 of the Supplemental Material [36].
Therefore, the simple state reported here has the same
property as the laminar state in many wall-bounded parallel
shear flows (cf. the Hagen-Poiseuille profile in pipe flow
[37]): it is a linearly stable simple exact solution that can be
destabilized by a finite-amplitude perturbation.
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FIG. 1 (color online). Time evolution of the total energy EðtÞ
and the energy content of the small scales E0ðtÞ for Re ¼ 76.86
normalized by the initial energy E0. Time is given in units of
initial large eddy turnover time t0 ¼ L=U, where U is the initial
rms velocity and L the initial integral scale. The point around
t=t0 ≈ 240 when E0ðtÞ vanishes and the total energy becomes
constant marks the onset of the self-organized state as discussed
in the main text.
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Next, we observe that at a fixed Reynolds number, the
time of self-organization (t=t0 ≈ 240 in the example above)
strongly depends on the initial conditions. We explore this
variability systematically by starting 100 runs with different
initial conditions for a fixed value of Re. In each simu-
lation, we monitor the time evolution of the total energy
EðtÞ and the dissipation rate εðtÞ ¼ 2ν

R kmax
kmin

dkk2Eðk; tÞ. In
order to identify the moment when the turbulent dynamics
collapses onto the self-organized state, we employ a
criterion that is based on the observation that since the
kinetic energy in the self-organized state is confined to
modes with k ¼ 1, the asymptotic value E∞ for all
individual runs in a given ensemble (at a given Re) can
be calculated from the energy input rate εW and ν. For
statistically stationary flows the energy input rate εW must
equal the dissipation rate ε, and we obtain for the total
energy of the self-organized state

E∞ ¼ εW
2ν

¼ const ð5Þ

Our data confirm that in every simulation, the total energy
eventually reaches the asymptotic value E∞, and the self-
organization time can be defined as the time when
EðtÞ ¼ E∞. We have checked that when we define the
relaminarization moment as the time when the dissipation
rate equals the input rate without any fluctuations, we
obtain identical results.
We quantify the variability of the self-organization times

by introducing a survival probability PReðtÞ that at a given
Re gives the probability that the system is still turbulent at
time t, having started in a turbulent state at time t ¼ 0. For
each t, we estimate this probability by dividing the number
of runs that are still turbulent after time t by the total
number of runs performed at this Reynolds number. The
resulting survival probabilities are shown in Fig. 2 for a
range of Re. We find that after some initial lag time during
which the system has evolved from the initial condition into

the turbulent state, the survival probability follows a simple
exponential law

PReðtÞ ∼ exp½−t=τðReÞ�; ð6Þ
where τðReÞ is the typical lifetime of turbulence that only
depends on the Reynolds number. The exponential form of
the survival probability suggests that the process is mem-
oryless, i.e., at each time the rate of relaminarization is
constant and does not depend on the previous dynamics of
the system. This behavior is identical to what was observed
in wall-bounded shear flows, such as pipe [9,10,13,17,38]
or plane Couette flow [11,25,26]. There, it was attributed to
the escape from a chaotic saddle associated with relamina-
rization of localized turbulence [17,18,38].
In order to verify that our results do not depend on the size

of the simulation box, one ensemble of 100 runs was created
using a larger simulation box with Lbox ¼ 4π. The collapse
of turbulence is also observed in these runs and leads to an
exponential survival probability with the same characteristic
lifetime as a reference data set at Lbox ¼ 2π [36].
The characteristic lifetime τ is obtained at each Reynolds

number from fitting the survival probabilities to Eq. (6), see
the solid lines in Fig. 2. We observe a steep increase in τ
with increasing Reynolds number as shown in Fig. 3. To
find the functional form τ ¼ τðReÞ, we fit the observed
lifetime to various model expressions. First, we consider a
power law with an exponent n < 0 in the form τ ∼ ðRec −
ReÞn that would suggest a divergence of the lifetime at
some critical Reynolds number Rec. We find that it is not
compatible with the data for any value of n; Fig. 3 shows an
example with n ¼ −1. The same applies to an exponential
increase of τ with Re. However, we find that a super-
exponential scaling in the form
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FIG. 2 (color online). Survival probability as a function of the
dimensionless time t=t0 from the beginning of a simulation.
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FIG. 3 (color online). Reynolds number dependence of the
escape rate t0=τ. The red (gray) line is a two-parameter fit
of the expression t0=τðReÞ ¼ 0.064 exp½− expðaþ bReÞ�, the
black line is a two-parameter fit of the expression
t0=τðReÞ ¼ exp½a0 − ðb0ReÞ5.6�Þ, the dash-dotted line is a fit of
an exponential, and the faint dotted line is a fit of a linear
dependence of t0=τ on Reynolds number.
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τðReÞ
t0

¼ c exp ½expðaþ bReÞ� ð7Þ

is compatible with our data for a fixed amplitude c ¼ 15.63
and a ¼ −3.48� 0.51, b ¼ 0.052� 0.005, see Fig. 3.
Once again, this conclusion parallels the superexponential
scaling of the lifetimes in wall-bounded shear flows
[9,18,38]. Further support for this scaling is provided in
the Supplemental Material [36].
We note that the superexponential law (7) is not the

only possible form that produces an acceptable fit to the
data. Another superexponential dependence, τðReÞ=t0 ¼
exp½−a0 þ ðb0ReÞ5.6� with a0 ¼ −3.18� 0.14 and b0 ¼
0.0136� 0.0003 also gives a good agreement with the
data set, as can be seen in Fig. 3.
The results presented in this Letter show that there is a

surprising analogy between the behavior of the isotropic
turbulence forced at a large scale and wall-bounded shear
flows at low Reynolds numbers. We observe that there is a
spontaneous transition from turbulence to a spatially simple
state, which we have identified here, and this “laminar”
state is linearly stable but can be destabilized by a finite-
amplitude perturbation. The turbulent-laminar transition is
abrupt and memoryless, and the associated survival prob-
ability is exponential in time, cf. Refs. [9,10,13,16,17,38].
The turbulent lifetimes do not diverge with an increase in
Re, but instead grow superexponentially, cf. Refs. [38,39].
This analogy implies that the phenomena of the transition
to turbulence in wall-bounded shear flows and forced
isotropic turbulence, typically thought of as a high-Re
phenomenon away from boundaries, are dynamically
similar and can be understood within the same theoretical
framework. As recent research suggests, the transition to
turbulence in shear flows belongs to the directed percola-
tion universality class [26,40–42], and we argue that the
same might be valid for forced isotropic turbulence.
The phase space of turbulent wall-bounded shear flows is

organized by exact solutions and periodic orbits of the
Navier-Stokes equations [43,44] and the relaminarization
events are associated with a sudden escape from this part of
the phase space [16]. Since we observe the same phenom-
enology, we speculate that the phase space of the forced
isotropic turbulence should also be organized by coherent
structures (exact solutions and periodic orbits). In Fig. 4 we
plot the energy content in the k ¼ 2mode versus the energy
in the k ¼ 1mode for a run at Re ¼ 76.86. Each point there
corresponds to a particular moment in time and the
dynamics proceeds from left to right, until the system
relaminarizes (i.e., E1 ¼ E∞ and E2 ¼ 0). We observe that
the dynamics revolves around several points in phase space
that are very suggestive of exact unstable solutions [44].
Identification of these coherent states will be the subject of
future work.
This work also suggests that the type of forcing

employed here is well suited for DNS of isotropic

turbulence with a view of creating an artificial, simpler
system whose dynamics still resemble more complicated
real physical systems, such as shear flows. Other types of
forcing, notably various forms of stochastic forcing, are
routinely used but might not have the phenomenological
similarities with the transition to turbulence in wall-
bounded shear flows. Recent results on self-organization
in magnetohydrodynamic flows, for example, demonstrate
that introducing random phases in the forcing term pre-
cludes the formation of a large-scale flow [24]. We argue
that Eq. (3) gives in fact a better approximation to naturally
occurring turbulence than an explicitly stochastic (and thus
more costly) forcing.
Our results provide new potential targets for turbulence

control, since we have shown that there is a stable large-
scale state hidden in what appears to be isotropic turbu-
lence. A particular choice of an additional external force
may be sufficient to push the system into the basin of
attraction of this stable state.
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