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We present experiments on the driven dynamics of a two-level superconducting artificial atom. The
driving strength reaches 4.78 GHz, significantly exceeding the transition frequency of 2.288 GHz. The
observed dynamics is described in terms of quasienergies and quasienergy states, in agreement with
Floquet theory. In addition, we observe the role of pulse shaping in the dynamics, as determined by
nonadiabatic transitions between Floquet states, and we implement subnanosecond single-qubit operations.
These results pave the way to quantum control using strong driving with applications in quantum
technologies.
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Monochromatic driving is the most common tool in
quantum control, applicable to various physical systems
including nuclear and electronic spins, atoms, ions, super-
conducting qubits, and quantum dots [1]. For driving that is
weak compared to the relevant transition frequency, the
dynamics can be described in terms of Rabi oscillations
between energy eigenstates. In contrast, with strong driving
the commonly used rotating wave approximation [2] breaks
down, resulting in complex evolution. Strong driving
dynamics is most adequately described in the framework
of Floquet theory [3], where the state of a driven system is
expressed in terms of quasienergies and quasienergy states.
Exploring this more general framework expands the field of
quantum control, gaining increasing relevance as current
experiments on the implementation of high-fidelity quan-
tum gates [4] and protection against decoherence [5] are
performed with a driving strength that is a significant
fraction of the transition frequency. In addition, strong
driving is relevant in the fields of quantum sensing, for
phase measurements [6], and quantum simulation, for
designing effective Hamiltonians in the emerging field of
Floquet engineering [7].
In this Letter we report experiments on the dynamics of

an artificial atom, a superconducting quantum bit [8,9],
strongly driven by a microwave field. Strong driving has
been studied in the field of atomic physics, using either
optical [10] or radio frequency pulses [6]. In experiments
with NV centers in diamond, time dynamics was observed
for driving strength up to values comparable to the
transition frequency [11]. Superconducting qubits display
a naturally strong coupling to electromagnetic fields due to
their mesoscopic character. Previous experiments on strong
driving of superconducting qubits have mostly addressed
the steady-state response to continuous waves [12–22]. A

few experiments have observed time-domain Rabi oscil-
lations [23–25] with a driving strength exceeding the
transition frequency, and two of these demonstrated good
agreement with the theoretically predicted Bessel-function
dependence of the Rabi frequency [23,25]. In our experi-
ments, we use quantum state tomography to investigate the
dynamics of a superconducting qubit strongly driven by
microwave pulses with controllable shape. The observed
system dynamics is very well described in terms of
quasienergies and quasienergy states, as predicted by
Floquet theory. In particular, we observe several frequency
components in the dynamics, in very good agreement with
theory. We find that the switching on and off of the driving
pulse plays an important role in the qubit evolution, as
determined by adiabaticity conditions in the Floquet picture
[26]. We also used strong driving for fast, subnanosecond,
preparation of qubit states.
The artificial atom in our experiment is a superconduct-

ing flux qubit [27]. Among the different types of super-
conducting qubits, flux qubits have the advantage of
high-level anharmonicity, leading to ideal two-level system
behavior, and of strong coupling to electromagnetic fields
[28,29], which enable strong driving. Qubit state measure-
ment is performed by probing microwave transmission
through a resonator coupled to the qubit [see Fig. 1(a)], in
the dispersive regime of circuit quantum electrodynam-
ics [30].
The qubit Hamiltonian is given byH�t� � −�ℏΔ=2�σz −

�ℏϵ�t�=2�σx in a basis formed by symmetric and antisym-
metric combinations of clockwise and anticlockwise
persistent current states in the qubit loop [27]. Here Δ,
the minimum energy level splitting, is a fixed parameter,
and ϵ�t� � 2Ip�Φ�t� − Φ0=2�, with Φ�t� the magnetic flux
applied to the loop dependent on the time t. The magnetic
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flux Φ�t� � Φs � Φd�t�, with Φs a static flux generated by
a superconducting coil and Φd�t� a time-varying magnetic
flux coupled to the qubit through a waveguide terminated
by an antenna [see Fig. 1(a)]. The usual approach employed
to generate control pulses is based on using a modulator to
shape the quadratures of a continuous wave produced by a
frequency synthesizer. Here we use instead a new gener-
ation of high-speed arbitrary waveform generator (AWG) to
directly synthesize the microwave pulses [31], leading to
the time accuracy required for control with subnanosecond
resolution pulses.
A plot of the qubit transition frequency versus the static

flux Φs, obtained by spectroscopy with weak and long
microwave pulses, is shown in Fig. 1(c). All the experi-
ments reported in this Letter are performed at the symmetry
point (Φs � Φ0=2), where the qubit transition frequency
ω01 � Δ � 2π × 2.288 GHz. We use amplitude shaped
pulses ϵ�t� � 2A�t� cos�ωt�, with A�t� characterized by a
maximum amplitude Am and rise and fall times denoted by
tr and tf, respectively [see Fig. 1(b)]. At the symmetry
point, the energy relaxation and pure dephasing times are
given by T1 � 1.8 μs and TRamsey � 0.3 μs. These coher-
ence times, currently limited by quasiparticle tunneling,
microscopic two-level systems, and charge noise [36,37],
can be further improved by infrared shielding techniques

and improved qubit design without impairing the ability to
strongly drive the qubit.
Experiments are performed by repeating, typically

16,384 times, a sequence formed of state reset, control
using an applied pulse, and measurement in the energy
eigenbasis. Figure 2(a) shows the qubit’s average excited
state probability versus the duration of the microwave
pulse, with driving on resonance. The waveform is defined
with zero rise or fall times; however, the actual rise and fall
times are determined by the analog bandwidth of the AWG
and are specified to be shorter than 22 ps [31]. For weak
driving [Fig. 2(a), top panel], sinusoidal oscillations are
obtained, as predicted based on the rotating wave approxi-
mation. With a large Rabi driving strength [Fig. 2(a),
bottom panel], large amplitude oscillations are accompa-
nied by smaller amplitude faster oscillations, a signature of
non-negligible counterrotating term effects. The different
frequency components are clearly visible in the Fourier
transform of the signal [Fig. 2(b)]. For a wide range
of the driving strength Am, from 2π × 0.20 GHz to
2π × 4.78 GHz, the Fourier transformed data are shown
in Fig. 2(c).
The presence of the various frequency components in the

Rabi oscillations can be understood based on Floquet
theory, which predicts that for a time-periodic
Hamiltonian with period T the quantum state is given by
jψ�t�i � P

j�0;1cje
−iϵjtjuj�t�i, with ϵj the quasienergies

and juj�t�i the quasienergy states, periodic in time with
period T. As a result, the probability to find the system in its
excited state is expected to show oscillatory behavior with
frequency components nω and �Δϵ� nω, with Δϵ the
quasienergy difference, ω � 2π=T the driving frequency,
and n any integer number. The harmonic drive signal used
in our experiment has the additional symmetry
ϵ�t� T=2� � −ϵ�t�, and as a result only components with
even n values are present [38]. Figure 2(d) shows the
extracted frequency components versus driving amplitude.
We compare the experimental results with calculations of
the quasienergies based on numerical simulations (solid
lines) and an analytical expression (dashed lines). The
latter, obtained based on approximate diagonalization after
transformation to a rotating frame [31], gives a quasienergy
difference Δϵ � ω

������������������������������������������������������������
�1 − J0�2A=ω��2 � J21�2A=ω�

p
, with

J0 or J1 the Bessel function of the first kind and order 0
or 1. This formula provides a good approximation for the
case of a two-level system biased at its symmetry point and
driven on or near resonance with arbitrary strength,
complementing previous theoretical work where the weak-
and strong-driving limits of this formula had been derived
[21,22]. Additional experiments were performed with the
qubit driven off resonance, with a driving frequency ω �
2π × 1.373 GHz [see Figs. 2(e) and 2(f)]. The Fourier
transform of the qubit population signal and the identified
frequency components are shown in Figs. 2(g) and 2(h),
respectively. Good agreement with the predictions of

(a)

(b)

FIG. 1 (color online). (a) Schematic representation of the
experimental setup. The qubit, formed by a superconducting loop
interrupted by Josephson junctions (cross symbols), is coupled
to a superconducting coplanar waveguide resonator. Readout is
based on the transmission of a microwave pulse from the
resonator input (left) to its output port (right). A waveguide
(bottom) is used to couple microwave control pulses to the
qubit. (b) Representation of qubit control pulses, with rise and fall
times tr and tf, respectively, and maximum-amplitude duration
tp. The thick line indicates the pulse envelope, which reaches a
maximum Am. During rise and fall, the envelope is shaped as
�Am=2��1 − cos �πt=tr�� and �Am=2�f1�cos �π�t− tp− tr�=tf �g.
(c) Qubit transition frequency ω01 from spectroscopy measure-
ments versus the static magnetic flux Φs. The continuous line is a
fit of the transition frequency, yielding the parameters
Δ � 2π × 2.288 GHz and Ip � 690 nA.

PRL 115, 133601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

133601-2



numerical calculations is observed in this case as well [see
Fig. 2(h)].
Tomography experiments confirm the role of the counter-

rotating terms in the driven evolution of the qubit. Figure 3
shows results of state tomography versus the duration of
driving pulses for two values of the driving amplitude,

Am � 2π × 0.10 GHz and Am � 2π × 0.46 GHz, and zero
rise and fall times. For both values of the driving amplitude,
high-amplitude oscillations are observed, with a period
corresponding to the quasienergy difference. In the weak-
driving limit, these oscillations are the usual Rabi oscil-
lations. High-frequency components are observed in
addition, with a significant amplitude at strong driving,
reflecting the presence of the non-negligible counterrotating
wave component. The results of tomography experiments
are in very good agreement with predictions of numerical
simulations of the Schrödinger equation (see Fig. 3).
The presence of the fast oscillatory terms in the driven

evolution depends not only on the pulse amplitude but also
on the pulse turn-on and turn-off times. Figure 4(a) shows
qubit state oscillations for a driving strength Am �
2π × 1.33 GHz, and different rise and fall times. Fast
oscillatory terms are gradually suppressed as the turn-on
and turn-off times are increased. We emphasize that fast
oscillatory components in the oscillations are completely
suppressed for slow pulse turn-on and turn-off despite the
fact that during most of the driven evolution the driving
amplitude is comparable with the transition frequency. The
absence of fast oscillations for slow turn-on and turn-off
can be understood based on adiabaticity in the Floquet
picture [26]. Indeed, the time-dependent qubit state can be
written, up to an overall phase and a geometric phase, as

jψ�t�i � c0�t�ju0�A; t�i � c1�t�e−i
R

t

0
Δϵ�t�dtju1�A; t�i, with

ju0�A; t�i and ju1�A; t�i the instantaneous driving-
amplitude-dependent quasienergy states. The initial values
of the coefficients c0 and c1 are determined by the
representation of the initial qubit state, which is the ground

FIG. 2 (color online). Coherent oscillations versus driving amplitude for (a)–(d) resonant driving (ω � Δ) and (e)–(h) off-resonance
driving (ω � 0.6Δ). (a),(e) Qubit excited state probability P1 versus control pulse duration tp for (a) Am � 0.10 and 1.00 GHz and
(e) Am � 0.30 and 1.44 GHz. (b),(f) Discrete Fourier transforms of the oscillations in (a) and (e), respectively. (c),(g) Color plot of the
Fourier transform of population oscillations versus frequency and driving pulse amplitude. (d),(h) Positions of peaks in the Fourier
transform of coherent oscillations versus driving amplitude extracted from the data in (c) and (g) (dots). The lines are plots of nω,
nω − Δϵ, and nω� Δϵ, respectively, with the quasienergy differenceΔϵ determined numerically and n an even integer. For the resonant
driving case (d), we show in addition corresponding curves (dashed) based on the analytical approximation for Δϵ discussed in the text
(see also Ref. [31]).

FIG. 3 (color online). Measurements and simulations of the
evolution of the Bloch vector components, given by the average
values of the Pauli σα (α � x; y; x) operators, after a pulse with
zero rise and fall time, versus the length of the pulse for
(a) Am � 2π × 0.10 GHz and (b) Am � 2π × 0.46 GHz. The
experimental results are in excellent agreement with the results
of numerical simulations.
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state, in the basis formed by the states ju0;1�0; 0�i �
�j0i � j1i�= ���

2
p

, with j0i or j1i the ground or excited state
of the qubit [31]. For slowly varying driving amplitude
A�t�, the evolution is adiabatic in the Floquet basis,
and therefore the coefficients c0 and c1 maintain their
initial values. The dynamics of the qubit in this case,
using the Bloch sphere representation [see Fig. 4(d)], can
be understood by the rotation of the pseudospin represent-
ing the state around a fictitious field determined at
any given time by the difference Δϵ between the quasie-
nergies. Similarly to the weak-driving case, the qubit
simply undergoes a Rabi rotation between the ground
and excited states, with a rotation angle given
by 1=2

R
t
0 Δϵ�t�dt.

With short rise and fall times, the evolution of the qubit
at the beginning and end of the pulse is nonadiabatic in the
Floquet representation. Nonadiabatic effects can be
described by unitary transformations UF;rise and UF;fall at
the beginning and the end of the pulse, respectively [see
Fig. 4(e)]. The latter depends periodically on the pulse
duration with period T, leading to fast oscillations of the
final state of the qubit. For a driving amplitude
Am � 2π × 1.33 GHz, the qubit population dynamics is
well described by a sum of oscillatory terms at frequencies
Δϵ, 2ω� Δϵ, and 2ω − Δϵ. In Fig. 4(c) we plot the
amplitude of the high-frequency components, at
2ω� Δϵ, versus the pulse rise and fall time. The
experimental results are in good agreement with values
extracted based on numerical simulations of the qubit
evolution.

In additional experiments [see Fig. 4(b)], we observed
the evolution of the qubit with strong pulses and asym-
metric rise and fall times. The final state of the qubit
displays fast oscillations for pulses with slow rise and fast
fall, whereas fast oscillations are absent for pulses with fast
rise and slow fall. This observation confirms the asym-
metric role of the two rotations, UF;rise and UF;fall.
We next discuss the use of strong driving for fast

quantum gates, specifically qubit state preparation.
Starting with the qubit in its ground state, we apply pulses
with a driving strength Am � 2π × 0.46 GHz and rise and
fall times of approximately 20 ps, defined by the AWG
bandwidth. The state �j0i − ij1i�= ���

2
p

is prepared in 0.48 ns
with a fidelity of 0.9996� 0.0006 [31]. Similarly, state j1i
is prepared in 1.08 ns with a fidelity of 0.9969� 0.0008.
We have performed numerical simulations of state evolu-
tion, which predict state preparation fidelities of 0.9997 and
0.9976 for states �j0i − ij1i�= ���

2
p

and j1i, respectively, in
good agreement with the experimental results. Future work
should address the optimization of gate fidelities based on
randomized benchmarking [4,39,40].
Our work demonstrates the feasibility of using strong

driving for the control of superconducting artificial atoms.
The dynamics was analyzed in the framework of Floquet
theory. The consideration of adiabaticity in the Floquet
picture provides a valuable viewpoint on dynamics, appli-
cable well beyond the regime where the rotating wave
approximation holds. Our experimental demonstration
brings very exciting prospects for experiments addressing
the interplay between Floquet dynamics and environmental

FIG. 4 (color online). (a),(b) Qubit excited state probability P1 versus pulse duration tp for various rise (fall) times tr (tf) and equal
maximum amplitude Am � 2π × 1.33 GHz. Panels (a) and (b) show data with symmetric or asymmetric rise and fall. (c) The measured
(dots and squares) and simulated (continuous and dashed lines) fast oscillation amplitudes, at frequencies 2ω − Δϵ and 2ω� Δϵ,
respectively. (d) Adiabatic and (e) nonadiabatic evolution in the Floquet picture. The state is represented on the Bloch sphere, with a
basis chosen such that the instantaneous quasienergy states ju0;1i are in the equatorial plane. The state vector evolution (thin arrows) is a
rotation around a fictitious field (thick arrows). The initial qubit state is �ju0i � ju1i�=

���
2

p
. In the adiabatic case (d), the state evolution is

described by a phase −
R
t
0 Δϵ�t�dt applied to ju1i, which is equivalent to rotation around the fictitious field ~Δϵ�t� aligned with ju0i. In

this picture, the evolution of the qubit is a simple rotation, although in the energy eigenbasis the qubit undergoes complex dynamics. In
the nonadiabatic case (e), transitions between Floquet states arise during pulse turn-on and turn-off, characterized by the unitary
transformations UF;rise and UF;fall, respectively, which correspond, in general, to rotations around axes that are not parallel to ~Δϵ�t�. The
asterisk ( 	) indicates that the actual rise or fall time is around 20 ps, determined by the analog bandwidth of the AWG.
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effects [41,42]. We expect that our results will stimulate
new work across a broad range of fields, including quantum
computing, open system dynamics, quantum simulation,
and quantum sensing.
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