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We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order
thermal correlators of the form hWðtÞVWðtÞVi. We reproduce holographic calculations similar to those of
Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution
of this block to the above correlation function begins to decrease exponentially after a delay of
∼t� − ðβ=2πÞ log β2EwEv, where t� is the fast scrambling time ðβ=2πÞ log c and Ew; Ev are the energy
scales of the W;V operators.
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Introduction.—In classical mechanics, the butterfly
effect is a vivid diagnostic of chaos: small perturbations
grow rapidly to affect the entire system. In quantum
mechanics, studies of chaos have often focused on less
direct measures, such as the statistics of level spacings in
the energy spectrum [1,2], or the local properties of energy
eigenvectors [3–5]. In this Letter, following Refs. [6–9] we
will focus on a notion of quantum chaos that is closely
related to the classical butterfly effect.
Consider a pair of rather general Hermitian operators V

and W in a quantum mechanical system. If the system is
strongly chaotic, we expect perturbations byV to affect later
measurements of W, for almost any choice of operators V
and W [10]. In other words, we expect the commutator
½V;WðtÞ� to become large. A useful diagnostic is the
expectation value of the square of the commutator [11]:

−h½V;WðtÞ�2iβ ¼hVWðtÞWðtÞViβþhWðtÞVVWðtÞiβ ð1Þ

− hVWðtÞVWðtÞiβ − hWðtÞVWðtÞViβ: ð2Þ
Here, h·iβ indicates the thermal expectation value at inverse
temperature β. Let us assume that the operators commute at
t ¼ 0. For small times, the terms on the first line cancel the
terms on the second line.Aswemove to large time, the terms
on the first line will each approach the order-one value
hWWiβhVViβ. This can be understood by viewing the
VWWV ordering as an expectation value of WW in a state
given by acting with V on the thermal state. If the energy
injected byV is small, the statewill relax and the expectation
valuewill approach the thermal value, hWWiβ,multiplied by
the norm of the state, hVViβ.
By contrast, in a suitably chaotic system, the correlation

functions on the second line will become small for large t.
From Eq. (1), it is clear that this will imply a large

commutator, and hence a quantum butterfly effect. We
believe that this happens for practically any [12] choice of
W and V and that, in fact, this behavior is a basic diagnostic
of quantum chaos.
This behavior has been confirmed for theories

holographically dual to Einstein gravity in recent work
[6–9,13]. There, the thermal state is represented by a black
hole, and the V;W operators create quanta that collide near
the horizon. The key effect leading to a large commutator is
the exponential blueshift relative to later slices as the W
perturbation falls into the black hole.
The purpose of this Letter is to reproduce part of that

analysis without using holography directly. Wewill work in
a 2D conformal field theory (CFT) where thermal expect-
ation values are related to vacuum expectation values by a
conformal transformation. We will also restrict attention to
a particular contribution to the four-point function given by
the large c Virasoro identity conformal block. This resums
the terms corresponding to factorization on powers and
derivatives of the stress tensor. The close relationship
between 2þ 1 gravity and the identity Virasoro block
has been demonstrated recently in Refs. [14–16]; our work
should be understood as an application of the techniques in
these papers to the problem studied in Refs. [6–9,13]. We
will find exact agreement between the Virasoro block
calculation and the corresponding holographic calculation
in pure 3D gravity. In particular, we will find that the
contribution of the identity block to hVWðtÞVWðtÞiβ
begins to decay exponentially around the fast scrambling
time [17,18] t� ¼ ðβ=2πÞ log c.
A key point that will emerge in our analysis is the

following. Each of the Lorentzian correlators on the
right-hand side of Eq. (1) can be obtained by analytic
continuation of the same Euclidean four-point function.
The sharp difference in behavior between the first line and
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the second line arises because the continuation defines a
multivalued function, with different orderings correspond-
ing to different sheets. To see the butterfly effect (via the
decay of the terms on the second line), one has to move off
the principal sheet.
It is important to emphasize that although the Virasoro

identity block does reproduce the gravitational calculation
of the four-point function, it is not the full answer. Indeed, a
singleVirasoro primarywith spin greater than two can easily
dominate the contribution from the identity in a certain
range of times t. In holographic terms, this sensitivity to the
spectrum is related to the fact that the high-energy collision
depends on stringy corrections. Just as the gravitational
calculation is a useful model for a more accurate string-
corrected analysis [19], the Virasoro identity block provides
a model for a more complete CFT calculation.
Although it is not our purpose to prove that the four-

point-function diagnostic described above agrees with
other definitions of quantum chaos, we will provide a
sanity check by evaluating the above four-point functions
in the two-dimensional Ising model. For this system, we
will see that certain out-of-time-order four-point functions
do not tend to zero for large t.
CFT calculations.—Conventions and review: In this

Letter, we will study thermal four-point correlation func-
tions ofW and V of the form in Eqs. (1) and (2). Eventually,
these operators will be arranged in the timelike configu-
ration shown in Fig. 1, where V is at the origin and W is at
position t > x > 0. However, we will obtain these corre-
lation functions by starting with the Euclidean correlator
and analytically continuing. In 2D CFT, we can map
thermal expectation values to vacuum expectation values
through the conformal transformation

zðx; tÞ ¼ eð2π=βÞðxþtÞ; z̄ðx; tÞ ¼ eð2π=βÞðx−tÞ: ð3Þ
Here, x; t are the original coordinates on the spatially
infinite thermal system and z; z̄ are coordinates on the
vacuum system. Explicitly,

hOðx; tÞ � � �iβ ¼
�
2πz
β

�
h
�
2πz̄
β

�
h̄
hOðz; z̄Þ � � �i; ð4Þ

where h; h̄ are the conformal weights of the O operator,
related to the dimension and spin by Δ ¼ hþ h̄ and
J ¼ h − h̄. On the left-hand side, we have a thermal
expectation value, at inverse temperature β, and on the
right-hand side we have a vacuum expectation value on the
z; z̄ space. It is common to work with units in which
β ¼ 2π, but we prefer to keep the β dependence explicit.
It will be essential in this Letter to study correlation

functions with operators at complexified times ti. In our
convention, real t corresponds to Minkowski time and
imaginary t corresponds to Euclidean time. Notice from
Eq. (3) that z̄ is the complex conjugate of z only if the time t
is purely Euclidean. In order to make contact with standard
CFT formulas for the four-point function, we will begin
with a purely Euclidean arrangement of the operators. This
means a choice of z1; z̄1;…; z4; z̄4 with z̄i ¼ z�i . With such a
configuration, the ordering of the operators is unimportant,
and global conformal invariance on the z; z̄ plane implies
that the four-point function can be written,

hWðz1; z̄1ÞWðz2; z̄2ÞVðz3; z̄3ÞVðz4; z̄4Þi

¼ 1

z2hw12 z2hv34

1

z̄2h̄w12 z̄2h̄v34

fðz; z̄Þ; ð5Þ

in terms of a function f of the conformally invariant cross
ratios

z ¼ z12z34
z13z24

; z̄ ¼ z̄12z̄34
z̄13z̄24

; zij ≡ zi − zj: ð6Þ

According to the general principles of CFT, we can expand
f as a sum of global conformal blocks, explicitly [20,21],

fðz; z̄Þ ¼
X
h;h̄

pðh; h̄Þzhz̄h̄Fðh; h; 2h; zÞFðh̄; h̄; 2h̄; z̄Þ; ð7Þ

where F is the Gauss hypergeometric function, the sum is
over the dimensions of global SLð2Þ primary operators, and
the constants p are related to operator product expansion
(OPE) coefficients pðh; h̄Þ ¼ λWWOh;h̄

λVVOh;h̄
.

Continuation to the second sheet: In order to apply the
above formulas to the correlators (1) and (2), we need to
understand how to obtain them as analytic continuations of
the Euclidean four-point function. That this is possible
follows from the fact that all Wightman functions are
analytic continuations of each other [22]. The procedure
involves three steps. First, one starts with the Euclidean
function, assigning small and different imaginary times
tj ¼ iϵj to each of the operators. Second, with the imagi-
nary times held fixed, one increases the real times of the
operators to the desired Lorentzian values. Finally, one
smears the operators in real time and then takes the
imaginary times fϵig to zero [24]. The result will be a
Lorentzian correlator ordered such that the leftmost oper-
ator corresponds to the smallest value of ϵ, the second
operator corresponds to the second smallest, and so on.
This elaborate procedure is necessary because Eq. (5) is a

multivalued function of the independent complex variables

FIG. 1 (color online). Left: The spacetime arrangement of the
W and V operators. Right: Their locations after the conformal
mapping, viewed in the Rindler patch on the boundary of AdS3
(gray) covered by x; t. The union of the gray and yellow regions is
the Poincaré patch covered by z; z̄.
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fzi; z̄ig. The interesting multivaluedness comes from
fðz; z̄Þ. By crossing symmetry, this function is single valued
on the Euclidean section z̄ ¼ z�, but it is multivalued as a
function of independent z and z̄, with branch cuts extending
from one to infinity. Different orderings of the W;V
operators correspond to different sheets of this function.
To determine the correct sheet, wemust assign iϵ’s as above,
and follow the path of the cross ratios, watching to see if they
pass around the branch loci at z ¼ 1 and z̄ ¼ 1.
To carry this out directly, we write

z1 ¼ eð2π=βÞðt0þiϵ1Þ; z̄1 ¼ e−ð2π=βÞðt0þiϵ1Þ; ð8Þ
z2 ¼ eð2π=βÞðt0þiϵ2Þ; z̄2 ¼ e−ð2π=βÞðt0þiϵ2Þ; ð9Þ
z3 ¼ eð2π=βÞðxþiϵ3Þ; z̄3 ¼ eð2π=βÞðx−iϵ3Þ; ð10Þ
z4 ¼ eð2π=βÞðxþiϵ4Þ; z̄4 ¼ eð2π=βÞðx−iϵ4Þ ð11Þ

as a function of the continuation parameter t0. When t0 ¼ 0,
we have a purely Euclidean correlator, on the principal
sheet of the function fðz; z̄Þ. When t0 ¼ t > x, we have an
arrangement of operators as shown in Fig. 1.
The cross ratios z; z̄ are determined by these coordinates

as in Eq. (6). Their paths, as a function of t0, depend on the
ordering of operators through the associated iϵ prescription.
Representative paths for the three cases of interest are
shown in Fig. 2. The variable z̄ never passes around the
branch point at one, and the z variable does so only in the
case corresponding to WVWV [25].
In the final configuration with t0 ¼ t, the cross ratios are

small. For t ≫ x, we have

z ≈ −eð2π=βÞðx−tÞϵ�12ϵ34; z̄ ≈ −e−ð2π=βÞðxþtÞϵ�12ϵ34; ð12Þ
where we introduced the abbreviation

ϵij ¼ iðeð2π=βÞiϵi − eð2π=βÞiϵjÞ: ð13Þ
For the orderings WWVV and WVVW, no branch cuts are
crossed, so the limit of small cross ratios can be taken on
the principal sheet of Eq. (7). The contribution from
the identity operator dominates, verifying our statement
in the Introduction that both hWðtÞVVWðtÞiβ and
hWðtÞWðtÞVViβ approach hWWihVViβ for large t.
ForWVWV, z passes around the branch point at one. The

hypergeometric functionFða; b; c; zÞ has knownmonodromy
around z ¼ 1, returning to a multiple of itself, plus a multiple
of the other linearly independent solution to the hypergeo-
metric equation, z1−cFð1þ a − c; 1þ b − c; 2 − c; zÞ. For
small z; z̄, we then have

fðz; z̄Þ ≈
X
h;h̄

~pðh; h̄Þz1−hz̄h̄; ð14Þ

where ~p has been defined to absorb the transformation
coefficient. On this sheet, as z; z̄ become small, global
primaries with large spin become important. As a function
of x; t, individual terms in this sum grow like
eðh−h̄−1Þte−ðhþh̄−1Þx. For sufficiently large t, this sumdiverges,
and it must be defined by analytic continuation. In other
words, we must do the sum over h; h̄ before we continue the
cross ratios. In a CFT dual to string theory inAdS3, we expect
this divergence even at a fixed order in the large c expansion,
because of the sum over higher spin bulk exchanges [19].
Virasoro identity block: The primary focus of this Letter

is reproducing the Einstein gravity calculation of the corre-
lation function. This calculation was done by studying free
propagation on a shock wave background, which implicitly
sums an infinite tower of ladder exchange diagrams. In the
CFT, these diagrams are related to terms involving powers
and derivatives of the stress tensor in the OPE representation
of the four-point function. In a two-dimensional CFT, all
such terms can be treated simultaneously using the Virasoro
conformal block of the identity operator, which itself is an
infinite sumofSLð2Þ conformal blocks. Including only these
terms in the OPE amounts to replacing

fðz; z̄Þ → F ðzÞF̄ ðz̄Þ; ð15Þ
where F is the Virasoro conformal block with dimension
zero in the intermediate channel. This substitution is appro-
priate for a large N CFT with a sparse spectrum of single-
trace higher spin operators [29].
The function F is not known explicitly, but there are

several methods for approximating it [14–16]. We will use a
formula from Ref. [15], which is valid at large c, with hw=c
fixed andsmall andhv fixed and large.Here, the formula reads

F ðzÞ ≈
�

zð1 − zÞ−6hw=c
1 − ð1 − zÞ1−12hw=c

�
2hv

: ð16Þ

This function has a branch point at z ¼ 1, as expected.
Following the contour around z ¼ 1 and taking z small, we
find

F ðzÞ ≈
�

1

1 − 24πihw
cz

�
2hv

: ð17Þ

The trajectory of z̄ does not circle the branch point at z̄ ¼ 1, so
for small z̄, we simply have F̄ ðz̄Þ ≈ 1, the contribution of the
identity operator itself. Substituting Eq. (17) in Eq. (15) and
then in Eq. (5), we find

hWðtþ iϵ1ÞVðiϵ3ÞWðtþ iϵ2ÞVðiϵ4Þiβ
hWðiϵ1ÞWðiϵ2ÞiβhVðiϵ3ÞVðiϵ4Þiβ
≈
�

1

1þ 24πihw
ϵ�
12
ϵ34

eð2π=βÞðt−t�−xÞ

�
2hv

; ð18Þ

where we define the fast scrambling time t� [17,18] with the
convention

FIG. 2 (color online). The paths taken by the cross ratio z during
the continuations corresponding to (from left to right) hWVWVi,
hWWVVi, and hWVVWi. Only in the first case does the path pass
around the branch point at z ¼ 1.
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t� ¼
β

2π
log c: ð19Þ

Equation (18) is the main result of our Letter. The correlation
function (18) begins to decrease at a time t∼ðβ=2πÞlogc=hw.
This formula agrees precisely with the bulk analysis

(reviewed in Appendix A) in the above scaling. It is
also interesting to consider the scaling hv; hw fixed, hw ≫
hv ≫ 1 with c → ∞. The bulk analysis suggests that
Eq. (18) is also correct in this scaling, but even without
the Virasoro block analysis, the SLð2Þ block of the stress
tensor [which gives a contribution ∝ hwhv=ðczÞ on the
second sheet] is enough to show that, for general dimen-
sions, the time until the identity Virasoro block is affected is
of order t� − ðβ=2πÞ log hwhv, where the second term is
order one in this scaling. This gives a field-theoretic
explanation for the origin of the fast scrambling time.
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APPENDIX A: BULK CALCULATIONS

Here, we will compute the correlation function (18) using
the gravitational shock wave methods of Refs. [6,8]. If
hw ≫ hv ≫ 1, we can calculate the correlation function by
treating the W operator as creating a shock wave and
calculating the two-point function of the V operator on that
background. The analysis breaks into twoparts: (i) finding the
geometry of the shock sourced by W and (ii) computing the
correlation function of the V operators in that background.
The metric of a localized shock wave [30] in (2þ 1)-

dimensional AdS-Rindler space is [6,8,26,31,32]

ds2 ¼ −
4

ð1þ uvÞ2 dudvþ
ð1 − uvÞ2
ð1þ uvÞ2 dx

2

þ 4δðuÞhðxÞdu2; ðA1Þ
where h will be defined below. We will consider a shock
sourced by a stress tensor,

Tuuðu0; v0; x0Þ ¼ Pδðu0Þδðx0 − xÞ; ðA2Þ
appropriate for a particle sourced by the W operator,
traveling along the u ¼ 0 horizon at transverse position
x. The metric (A1) can be understood as two halves of AdS-
Rindler, glued together at u ¼ 0 with a shift

δvðxÞ ¼ hðxÞ ðA3Þ
in the v direction. Plugging into Einstein’s equations, we
determine h as

hðx0Þ ¼ 2πGNPe−jx
0−xj: ðA4Þ

To relate this geometry to the state jψi, we need to fix P.
In other words, we need to evaluate

hψ j R dx0du0Tuujψi
hψ jψi ; ðA5Þ

where we take the integral to run over the slice v ¼ 0. We
will assume that W is dual to a single-particle operator in
the bulk, so that the state jψi can be described by a Klein-
Gordon wave function K. This wave function is a bulk-to
boundary propagator from the location (x; t) of the W
operator. It is given in terms of the regularized geodesic
distance d from the boundary point, as K ∝ ðcosh dÞ−2hw .
At v ¼ 0, we find

Kðt; x;u0; x0Þ ¼ N
½etu0 þ coshðx − x0Þ�2hw : ðA6Þ

The norm hψ jψi is a Klein-Gordon inner product

hψ jψi ¼ 2i
Z

dx0du0Kðtþ iτ; x; u0; x0Þ�

× ∂u0Kðtþ iτ; x; u0; x0Þ: ðA7Þ
The u0 integral can be done using contour integration, and
the x0 integral can be done in terms of Γ functions:

hψ jψi ¼ N 2
4π3=2

ð2 sin τÞ4hw
Γ½4hw�

Γ½2hw�Γ½2hw þ 1
2
� : ðA8Þ

For the numerator, the stress tensor for the Klein-
Gordon field is given by the expression Tuu ¼ ∂uφ∂uφ.
Contracting bulk operators with boundary operators using
K, we have

hψ j
Z

dx0du0Tuujψi ¼ 2

Z
dx0du0∂u0Kðtw þ iτ; x; u0; x0Þ�

× ∂u0Kðtw þ iτ; x; u0; x0Þ; ðA9Þ
where the factor of 2 comes from the two different ways of
doing the contractions. The integrals can be done the same
way as before:

hψ j
Z

dx0du0Tuujψi

¼ N 2
8π3=2etw

ð2 sin τÞ4hwþ1

Γ½4hw�Γ½2hw þ 1
2
�

Γ½2hw�3
: ðA10Þ

Taking the ratio at large hw, we find

P ¼ 2hwetw

sin τ
: ðA11Þ

The second step, following Ref. [6], is to compute the
two-sided correlation function of the V operators in this
shock background. We will do this using the geodesic
approximation

hψ jVLVRjψi ∝ e−md; ðA12Þ
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where d is the regularized geodesic distance and the massm
is approximately 2hv, the conformal weight of V.
Following Ref. [6], we find

d ¼ 2 log 2r∞ þ log½1þ hð0Þ�: ðA13Þ
After subtracting the divergent distance in the unper-

turbed thermofield double state, dTFD ¼ 2 log 2r∞, we plug
the distance into Eq. (A12), finding

hψ jVLVRjψi
hψ jψihVLVRi

¼
�

1

1þ 4πGNhw
sin τ et−x

�
2hv

: ðA14Þ

This agrees with Eq. (18) after (i) using GN ¼ 3=2c to
express the gravitational constant in terms of the central
charge, (ii) plugging in ϵ1 ¼ −τ, ϵ2 ¼ τ, ϵ3 ¼ 0, ϵ4 ¼ β=2,
and (iii) using β ¼ 2π.

APPENDIX B: ISING MODEL

It is interesting to contrast the behavior of out-of-time-
order correlators in a chaotic theory to those in an
integrable theory. As an example, we consider the two-
dimensional Ising CFT. This theory has c ¼ 1=2 and three
Virasoro primary operators: I, σ, and ϵ, corresponding to
the identity, “spin,” and “energy” operators. The different
combinations of four-point correlators of these primaries
are well known [33–35]. We will present these by giving
the functions fðz; z̄Þ in Eq. (5):

fσσðz; z̄Þ ¼
1

2
ðj1þ ffiffiffiffiffiffiffiffiffiffi

1 − z
p j þ j1 − ffiffiffiffiffiffiffiffiffiffi

1 − z
p jÞ; ðB1Þ

fσϵðz; z̄Þ ¼
���� 2 − z

2
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
����
2

; ðB2Þ

fϵϵðz; z̄Þ ¼
���� 1 − zþ z2

1 − z

����
2

; ðB3Þ

where the operators are ordered WVWV with the configu-
ration specified by Eqs. (8)–(11). Following the contour
across the branch cut for the two correlators that do have a
second sheet and taking z small, we find

hσσσσiβ
hσσi2β

¼ 0;
hσϵσϵiβ

hσσiβhϵϵiβ
¼−1;

hϵϵϵϵiβ
hϵϵi2β

¼ 1: ðB4Þ

Only hσσσσi vanishes at large t.

*drob@mit.edu
†stanford@ias.edu

[1] M. V. Berry and M. Tabor, Level clustering in the regular
spectrum, Proc. R. Soc. A 356, 375 (1977).

[2] O. Bohigas, M. J. Giannoni, and C. Schmit, Characteriza-
tion of Chaotic Quantum Spectra and Universality of Level
Fluctuation Laws, Phys. Rev. Lett. 52, 1 (1984).

[3] M. Berry, Regular and irregular semiclassical wavefunc-
tions, J. Phys. A 10, 2083 (1977).

[4] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

[5] M. Srednicki, Chaos and quantum thermalization, Phys.
Rev. E 50, 888 (1994).

[6] S. H. Shenker and D. Stanford, Black holes and the butterfly
effect, J. High Energy Phys. 03 (2014) 067.

[7] S. H. Shenker and D. Stanford, Multiple shocks, J. High
Energy Phys. 12 (2014) 046.

[8] D. A. Roberts, D. Stanford, and L. Susskind, Localized
shocks, J. High Energy Phys. 03 (2015) 051.

[9] A. Kitaev, Hidden correlations in the hawking radiation and
thermal noise, in Talk given at the Fundamental Physics
Prize Symposium (2014).

[10] We take V;W to be approximately local operators, smeared
over a thermal scale, andwith one-point functions subtracted.

[11] A. Larkin and Y. Ovchinnikov, Quasiclassical method in the
theory of superconductivity, J. Exp. Theor. Phys. 28, 1200
(1969).

[12] Here, “practically any” should include all local operators
with both h; h̄ nonzero.

[13] S. Leichenauer, Disrupting entanglement of black holes,
Phys. Rev. D 90, 046009 (2014).

[14] T. Hartman, Entanglement entropy at large central charge,
arXiv:1303.6955.

[15] A. L. Fitzpatrick, J. Kaplan, and M. T. Walters, Universality
of long-distance AdS physics from the CFT bootstrap,
J. High Energy Phys. 08 (2014) 145.

[16] C. T. Asplund, A. Bernamonti, F. Galli, and T. Hartman,
Holographic entanglement entropy from2dCFT:Heavy states
and local quenches, J. High Energy Phys. 02 (2015) 171.

[17] P. Hayden and J. Preskill, Black holes as mirrors: Quantum
information in random subsystems, J. High Energy Phys. 09
(2007) 120.

[18] Y. Sekino and L. Susskind, Fast scramblers, J. High Energy
Phys. 10 (2008) 065.

[19] S. H. Shenker and D. Stanford, Stringy effects in scram-
bling, J. High Energy Phys. 05 (2015) 132.

[20] A. Zamolodchikov, Conformal symmetry in two-dimensions:
An explicit recurrence formula for the conformal partial wave
amplitude, Commun. Math. Phys. 96, 419 (1984).

[21] F. Dolan and H. Osborn, Conformal four-point functions
and the operator product expansion, Nucl. Phys. B599, 459
(2001).

[22] Theorem 3.6 of Ref. [23].
[23] R. F. Streater and A. S. Wightman, PCT, Spin and Statistics,

and All That (W. A. Benjamin, New York, 1964).
[24] In fact, we will omit this final step in this Letter. However,

we will omit it consistently on both sides of the bulk and
boundary calculations that we are comparing.

[25] A very similar continuation was discussed for high-energy
scattering kinematics in Refs. [26–28].

[26] L. Cornalba, M. S. Costa, J. Penedones, and R. Schiappa,
Eikonal approximation in AdS=CFT: From shock waves
to four-point functions, J. High Energy Phys. 08 (2007) 019.

[27] L. Cornalba, M. S. Costa, J. Penedones, and R. Schiappa,
Eikonal approximation in AdS=CFT: Conformal partial
waves and finite N four-point functions, Nucl. Phys.
B767, 327 (2007).

[28] L. Cornalba, M. S. Costa, and J. Penedones, Eikonal
approximation in AdS=CFT: Resumming the gravitational
loop expansion, J. High Energy Phys. 09 (2007) 037.

[29] It is interesting to note that, because of the rapid z1−hz̄h̄

behavior on the second sheet, even one single-trace operator

PRL 115, 131603 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

131603-5

http://dx.doi.org/10.1098/rspa.1977.0140
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1088/0305-4470/10/12/016
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1007/JHEP03(2014)067
http://dx.doi.org/10.1007/JHEP12(2014)046
http://dx.doi.org/10.1007/JHEP12(2014)046
http://dx.doi.org/10.1007/JHEP03(2015)051
http://dx.doi.org/10.1103/PhysRevD.90.046009
http://arXiv.org/abs/1303.6955
http://dx.doi.org/10.1007/JHEP08(2014)145
http://dx.doi.org/10.1007/JHEP02(2015)171
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://dx.doi.org/10.1088/1126-6708/2008/10/065
http://dx.doi.org/10.1088/1126-6708/2008/10/065
http://dx.doi.org/10.1007/JHEP05(2015)132
http://dx.doi.org/10.1007/BF01214585
http://dx.doi.org/10.1016/S0550-3213(01)00013-X
http://dx.doi.org/10.1016/S0550-3213(01)00013-X
http://dx.doi.org/10.1088/1126-6708/2007/08/019
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.007
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.007
http://dx.doi.org/10.1088/1126-6708/2007/09/037


with spin greater than two and dimension parametrically
independent of c will dominate over the Virasoro identity
block near time t�. This means that the universal contribution
to the correlator identified in this Letter applies only to
CFTs with a very sparse spectrum of single-trace operators.
This matches the sensitivity of high-energy scattering in
gravity to massive higher spin fields, which grow more
rapidly with energy. In a consistent bulk theory of higher spin
fields, such as string theory, a Regge-type resummation of
an infinite number of stringy operators is necessary. For
further discussion of this point in the present context, see
Ref. [19].

[30] Although we refer to these geometries as shock waves, the
terminology is somewhat misleading in 2þ 1 dimensions,

since the geometry is locally pure AdS3 away from the
source.

[31] T. Dray and G. ’t Hooft, The gravitational shock wave of a
massless particle, Nucl. Phys. B253, 173 (1985).

[32] G. T. Horowitz and N. Itzhaki, Black holes, shock waves,
and causality in the AdS=CFT correspondence, J. High
Energy Phys. 02 (1999) 010.

[33] A. Belavin, A. M. Polyakov, and A. Zamolodchikov,
Infinite conformal symmetry in two-dimensional quantum
field theory, Nucl. Phys. B241, 333 (1984).

[34] M. P. Mattis, Correlations in two-dimensional critical
theories, Nucl. Phys. B285, 671 (1987).

[35] P. H. Ginsparg, Applied conformal field theory,
arXiv:hep-th/9108028.

PRL 115, 131603 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

131603-6

http://dx.doi.org/10.1016/0550-3213(85)90525-5
http://dx.doi.org/10.1088/1126-6708/1999/02/010
http://dx.doi.org/10.1088/1126-6708/1999/02/010
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1016/0550-3213(87)90361-0
http://arXiv.org/abs/hep-th/9108028

