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We determine the minimum energy required to control the evolution of any mesoscopic quantum system
in the presence of arbitrary Markovian noise processes. This result provides the mesoscopic equivalent of
the fundamental cost of refrigeration, sets the minimum power consumption of mesoscopic devices that
operate out of equilibrium, and allows one to calculate the efficiency of any control protocol, whether it be
open-loop or feedback control. As examples, we calculate the energy cost of maintaining a qubit in the
ground state and the efficiency of resolved-sideband cooling of nano-mechanical resonators, and discuss
the energy cost of quantum information processing.
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Introduction.—Recent advances in the fabrication and
control of mesoscopic quantum devices [1–5] have made
their potential application in future technologies evermore
promising [6–8]. In such applications, mesoscopic systems
must be controlled to reduce the effects of environmental
noise [9,10]. Since reducing noise necessarily involves
reducing the entropy of the controlled system, Landauer’s
principle suggests that there is an energetic cost, meaning
that work must be supplied that can never be recovered.
This energy cost is a fundamental question in quantum
control, and it is technologically important as it quantifies
both the minimum power consumption and the minimum
heat dissipation that must be handled by mesocopic
devices. Here we show that it is possible to fully character-
ize, in a relatively simple way, the minimum power required
for continuous control of any mesoscopic quantum system
subjected to arbitrary Markovian noise [11].
There is a natural division of controlled systems into

weakly coupled and strongly coupled, depending on how
large their interaction with the controller is. For weakly
coupled systems—which include most present-day meso-
scopic systems [12]—the coupling does not appreciably
change the system’s energy levels. As a result, the control
does not affect the noise processes perturbing the system
but only adds Hamiltonian terms to the dynamics that
facilitate control. For strongly coupled systems, the cou-
pling does modify the system’s energy levels and, with that,
the environmental noise. This means that the controlled
system and controller cannot be treated as thermodynami-
cally separate.
Preliminaries.—The evolution of a mesoscopic system S

weakly coupled to its surroundings is given by a linear
differential equation for its density matrix ρ. Denoting the
Hamiltonian of the system as HS and the linear super-
operators that model the irreversible dynamics induced by
the environmental noise processes Di

S, i ¼ 1;…; N, the

equation of motion for S in the absence of any
control mechanism is the Lindblad master equation _ρ ¼
−ði=ℏÞ½HS; ρ� þ

P
iD

i
SðρÞ≡ LSðρÞ [10,13]. We further

assume each noise process has an invariant state πi, given
asDi

SðπiÞ ¼ 0. For example, noise from a thermal reservoir
at temperature T would have as a fixed point, the
Boltzmann density πeq ∝ e−HS=T (with kB ¼ 1 assumed
throughout). Thus, we can view the overall dynamics as a
competition between noise processes, each trying to impose
its own steady state onto the system. The net effect is that
in the absence of control, S will relax to a noise-induced
steady-state density matrix ρss, given as the solution of
LSðρSSÞ ¼ 0. The goal of control is to maintain S in an
arbitrary state ρ� ≠ ρSS.
Weakly coupled control.—Control is implemented by

weakly coupling S to an auxiliary quantum system A
immersed in a thermal bath at temperature T, as in Fig. 1, in
such a way that the reduced steady state of S is ρ�. The
assumption that S and A are weakly coupled guarantees
that the dynamics induced in S by its surroundings, given

FIG. 1 (color online). Diagram of energy flow in a control
process: A system S (green square) bombarded by noises fDi

Sg
is manipulated by a control system, consisting of an auxiliary A
(blue circle) that extracts noise and energy

P
Ei
S from S,

depositing this energy as heat − _QA in its environment by
supplying work _W. The time arrow is evident by the directional
flow of energy through the figure from left to right, which
demands that energy is dissipated.
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by fDi
Sg, is not changed by the coupling; yet the control

system can still affect S’s evolution. Thus, the evolution of
the joint density matrix τ of S⊕A can be modeled as

_τ ¼ ð−i=ℏÞ½HðtÞ; τ� þ
X
i

Di
SðτÞ þDAðτÞ; ð1Þ

in terms of the time-dependent joint Hamiltonian HðtÞ ¼
HS þHA þ VðtÞwith auxiliary HamiltonianHA and weak
interaction VðtÞ ≪ HS; HA, and the thermal-noise operator
affecting the auxiliary, DA. It is important to note that
while we perform our analysis by coupling the system to
a mesoscopic auxiliary system, the results apply to any
control method since this scenario has measurement-based
control as a special case [10,14].
Our main result is the minimum power _W that the

controller must supply to control S, which crucially
depends only on S’s surroundings and the target state
ρ�. We prove this result rigorously—the proof is outlined
below and is detailed in Ref. [15]—but it can be understood
in terms of an intuitive picture. It is due to the fact that
for any isothermal process, the work done on a system is
bounded by the relation W ≥ ΔF, where ΔF is the change
in the nonequilibrium free energy FðρÞ ¼ EðρÞ − TSðρÞ,
with average energy EðρÞ ¼ Tr½ρHS� and von Neumann
entropy S ¼ −Tr½ρ ln ρ� [16]. With this in mind, each noise
sourceDi

S continuously pushes the state of S away from ρ�
and, in doing so, changes its free energy, implying that the
controller must supply a commensurate amount of work
to restore this free energy. Specifically, in the controlled
steady state, the noise perturbations are changing S’s
entropy at a rate _SiSðρ�Þ ¼ −Tr½Di

Sðρ�Þ ln ρ�� while pump-
ing energy in at a rate _Ei

Sðρ�Þ ¼ Tr½Di
Sðρ�ÞHS�. To undo

these perturbations, the controller must continuously trans-
fer this entropy and energy through A, eventually dumping
it in A’s thermal reservoir at temperature T. We show that
this requires a minimum work rate

_Wmin ¼ −
X
i

_Fi
Sðρ�Þ ¼

X
i

T _SiSðρ�Þ − _Ei
Sðρ�Þ

¼ −
X
i

Tr½Di
Sðρ�ÞðT ln ρ� þHSÞ�; ð2Þ

where _Fi
S is the rate of change of the free energy of S due to

the noise, evaluated at the temperature of the auxiliary’s
thermal reservoir. To summarize, the noise affects the free
energy of S, and the controller must undo this change in
free energy, requiring work; the reference temperature is
that of A’s thermal reservoir since the energy is ultimately
dissipated there. This bound is for the energetics of the
joint system and therefore not a manifestation of the
nonadiabatic entropy production [17–19] for quantum
nonequilibrium steady states (see Ref. [15]). We now
explore the consequences of Eq. (2).
First, notice that _Wmin may be negative, meaning that

we can extract energy while controlling the system. For
example, when the system is coupled to a hot bath at TH

and a cold one at TC, our target state ρ� may coincide with
the regime where S operates as a heat engine. However,
for isothermal control in which S sees a single bath at
temperature T, _Wmin must be positive as required by the
second law. Another important scenario is that of main-
taining S in a pure (zero-entropy) state. Since the derivative
of entropy at zero is infinity, such control requires an
infinite rate of work as reflected by the term ln ρ in
Eq. (2). It is for the same reason that the power required
for macroscopic refrigeration tends to infinity as the cold
temperature tends to zero. Finally, our result also supplies
the minimum work to push the system through a specified
sequence of states ρ�ðtÞ, from t ¼ 0 to θ, since the energy
cost at any particular time depends only the system’s state
at that time: _Wmin ¼ −

R
θ
0

P
_Fi½ρ�ðtÞ�dt. Via this bound,

one can quantify the energetic efficiency of finite-time
protocols such as shortcuts to adiabaticity [20].
Our analysis further reveals that the minimum work,

Eq. (2), can be achieved when the auxiliary operates
reversibly. This requires a separation of time scales, where
the thermal relaxation of the auxiliary is very fast, allowing
it to remain essentially always in equilibrium. Additionally,
the auxiliary’s Hamiltonian dynamics must be fast com-
pared to the system dynamics in order to rapidly extract
the noise. An explicit nonautonomous protocol that imple-
ments this time-scale separation is described in Fig. 2,
where the rapid auxiliary dynamics are exploited to
complete a reversible control cycle in every infinitesimal
moment of time.
Strongly coupled control.—When the auxiliary is

coupled to S so strongly that it changes the energy levels
of S, it also changes the effect of the environment on S by
altering the fDi

Sg. Because of this, we can no longer bound
the minimum work to control S solely in terms of the

FIG. 2 (color online). Nonautonomous optimal control proto-
col: In a small interval of time dt, noise perturbs the state
of S (green square) from ρ� → ρ0 ¼ ρ� þ LSðρ�Þdt. An optimal
controller is formed by an auxiliary system A (blue circle)
whose Hamiltonian can be set to match S’s. At the beginning
of the time interval, A’s state is the target state ρ� and control
proceeds in four steps: (1) A is decoupled from its thermal
environment, (2) a unitary swap is performed on S⊕A changing
A’s state to ρ0, (3) A is coupled to its thermal environment, and
(4) A is isothermally and reversibly reset to ρ�, doing work
W ¼ Fðρ�Þ − Fðρ0Þ ≈ −

P
_Fi
Sðρ�Þdt.
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properties of S because the result will depend on the choice
of joint Hamiltonian H through the interaction.
First we observe that if we have access to any joint

Hamiltonian H, no work is required to sustain S in an
arbitrary constant state ρ�: We can always choose a fixedH
so that the energy levels and eigenstates of S set ρSS ¼ ρ�.
Since H is time independent, no work is required.
Therefore, the problem is well motivated only when the
interaction V is restricted to a subset V of all interactions.
We include in V all weak-coupling Hamiltonians, defined
as those that do not appreciably change the eigenstates or
eigenvalues of the system. This allows any control of the
system that is slow compared to its dynamics, as well as
unlimited control of the auxiliary [15].
We show that the minimum work to control strongly

coupled systems is

_Wmin ¼ min
H;τ

�
−
X
i

Tr½Di
SðτÞðT ln τ þHÞ�

�
; ð3Þ

where the minimum is taken over allH ∈ V and τ such that
TrA½τ� ¼ ρ�. The proof is an extension of that for Eq. (2)
[15]. We show that this bound is tight by demonstrating
a protocol that saturates it, akin to the weak-coupling
protocol in Fig. 2. Suppose we know the Hamiltonian and
density matrix that give the minimum in Eq. (3): Call them
Hm and τm. Then, in a small time interval dt, the system’s
noise perturbs the joint system, causing an evolution
τm → τ0. To undue these perturbations, we couple the joint
system to A’s thermal reservoir and rapidly and reversibly
raise A’s energy levels so that the joint state becomes
σ ⊗ j0ih0j, for some system state σ. The auxiliary is then
uncoupled from the bath, and the state of the system is
swapped into the auxiliary: j0ih0j ⊗ σ. This will usually
require a weak interaction, which is allowed since it is only
strong changes to V that are constrained. Now that all the
nontrivial structure of the state is contained in the auxiliary,
we can use our ability to arbitrarily manipulate the auxiliary
Hamiltonian to isothermally and reversibly return the joint
state to the initial state τm. Since the entire process that
takes the joint state from τ0 → τm is reversible, the work
equals the free-energy difference ΔF ¼ FðτmÞ − Fðτ0Þ
predicted in Eq. (3). Note that here we have restricted
ourselves to a constant or slowly varying ρ�, and thus Hm,
to ensure that the system evolution is Markovian.
Resolved-sideband cooling.—Resolved-sideband cool-

ing is the current state of the art in cooling mechanical
quantum resonators [21–25] and is an example of coherent
feedback control [26,27]. The auxiliary system is an optical
or superconducting oscillator with a frequency Ω suffi-
ciently high that it sits in its ground state at the ambient
temperature T. Cooling is accomplished by coupling the
oscillators linearly and modulating this coupling at the
frequency difference. In the weak coupling (rotating-wave)
approximation, the interaction Hamiltonian is V ¼ GþG†

with G ¼ ℏga†be−iðΩ−ωÞt; ω is the mechanical frequency,

and a and b are the respective annihilation operators
for the oscillators. This driven interaction mediates quanta
exchange between the resonators, with the energy differ-
ence per quantum supplied as work Δw ¼ ℏðΩ − ωÞ.
To achieve cooling, the auxiliary must dump energy into
the bath with sufficient speed.
Because of the linear dynamics, the cooled steady state

of the mechanical oscillator under sideband cooling is a
Boltzmann-like equilibrium state at an effective temper-
ature, Teff < T. While Teff is not a true temperature, we will
see that it is useful. The rate at which the bath increases the
oscillator entropy in the cooled state is _SS ¼ _QS=Teff , with
_QS the heat flow from the bath into the oscillator and,
equivalently, the energy flow to the auxiliary. Thus, rather
strikingly, the mesoscopic oscillator has an entropy pro-
duction rate identical to that of a thermal bath at temper-
ature Teff . Because of this, the cooling efficiency has
precisely the form of that of a macroscopic refrigerator.
Defining the coefficient of performance in the usual way as
ηCOP ¼ _QS= _W, where _W is the actual power consumed
by the fridge [28], the minimum power can be written as
_Wmin ¼ _QSη

COP
ideal, with efficiency

ϵ ¼ _Wmin= _W ¼ ηCOP=ηCOPideal: ð4Þ

Here ηCOPideal ¼ T=Teff − 1 is the ideal Carnot coefficient of
performance. In Fig. 3, we plot the effective temperature
and efficiency achieved by sideband cooling as a function
of the interaction rate g, using parameters from the recent
experiment in Ref. [29]. We see that stronger coupling
gives increased efficiency and a colder temperature, and

FIG. 3 (color online). Plot of the efficiency ϵ of resolved-
sideband cooling of a mechanical oscillator in the weak-coupling
regime, as a function of the interaction rate g for three values
of the auxiliary oscillator’s damping rate, γ0=2π ¼ 105 Hz (solid
black line), 106 Hz (dashed red line), and 107 Hz (long-dashed
blue line). Corresponding opaque curves give the cooled effective
temperature Teff , and the grey dotted line is the ambient temper-
ature T. Parameters from Ref. [29] are ω=2π ¼ 10.56 MHz,
Ω=2π ¼ 1.54 GHz, T ¼ 20 mK, and γ=2π ¼ 32 Hz.
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that high damping is only effective when the coupling
transfers the entropy with sufficient speed.
Cooling a single qubit.—The master equation describing

a weakly damped qubit with energy gap E in contact with
a bath at temperature T can be found in Refs. [10,13].
We wish to maintain the qubit at a temperature Tc < T.
If Tc=E ≪ 1, so that the qubit is close to its ground state,
the required power from Eq. (2) is simply

_Wmin ≈ γnTEðT=Tc − 1Þ; ð5Þ
with γ the qubit’s damping rate and nT ¼ 1=ðeE=T − 1Þ.
The power goes to infinity as Tc → 0 as expected.
The full expression for arbitrary Tc is obtained by replacing
nT by ðz − wÞ=½ðz − 1Þðwþ 1Þ�, where z ¼ expðE=TÞ and
w ¼ expðE=TcÞ.
Coupling the qubit strongly to an auxiliary qubit with

an energy gap E > E provides a simple example in which
a strong interaction reduces the power requirements for
ground-state cooling. The interaction allows us to effec-
tively increase the energy gap of the first qubit, increasing
the equilibrium population of the ground state and thus
reducing the effort required to preserve that state. Let the
auxiliary gap be E ≫ kT so that it effectively sits in
its ground state j0i, and take the Hamiltonian of the two

qubits asH ¼ Eσð1Þz =2þHI þ Eσð2Þz =2with the interaction

HI ¼ gσð1Þz σð2Þz =2. Since the auxiliary is in state j0i, if we
set g ¼ −ε, and assuming that E > ε > E, then the two
lowest-energy states of the joint system are j0ij0i and
j1ij0i, where jiijji denotes system state jii and auxiliary
state jji. These two states have an energy gap of Eþ ε, so
the interaction effectively increases the energy gap of the
first qubit by ε. The minimum power consumption is then
given by replacing E with Eþ ε in Eq. (5).
Devices that operate out of equilibrium.—A quantum

computer is one such device. While quantum logic gates are
unitary and thus require no energy, a quantum computer
consumes power because the constituent qubits are subject
to relaxation (errors) from environmental noise. The error-
correction process continually introduces new qubits pre-
pared in near-pure states to combat these errors [30–32].
We can estimate the energy consumption per qubit for a
quantum computer by using a simple error model and
averaging the minimum energy dissipation for a single
qubit over all pure states. Since fault-tolerant computation
requires that the qubits are refreshed while the errors
are still small, the analysis we have performed above
for continuous-time control is appropriate. However, we
restrict ourselves to logic gates that are slow compared to
the qubit frequency to ensure the damping is Markovian
[33]. A typical error model involves thermal damping at
(effectively) zero temperature at rate γ and depolarizing at
rate β for which the master equation is _ρ ¼ −ðγ=2Þðσ†σρþ
ρσ†σ − 2σρσ†Þ − ðβ=4ÞPj½σj; ½σj; ρ�� with j ¼ x; y; z. The
change in free energy averaged over all pure states is

ΔF ≈ ðpβ lnpβ þ pγ lnpγÞkT − pγE, where pβ ¼ βτ ≪ 1
and pγ ¼ γτ=2 ≪ 1 are the error probabilities due to the
thermal damping and depolarizing, respectively, and E
is the energy gap of the qubit. The time τ is the duration
of a single lowest-level fault-tolerant gate, which includes
the auxiliary qubits injected for error-correction and/or
teleportation operations, both of which refresh the working
qubits [30]. The minimum energy consumption of a
computation is therefore MΔF, where M is the total
number of qubits injected during the computation. Given
the above form of ΔF, we can conclude that if quantum
computers run with kT ≪ E as presently envisaged, the
minimum energy cost will be dominated by the loss of
the qubits’ internal energy to the bath.
Outline of proofs of Eqs. (2) and (3).—The key ingre-

dient is a second-law-like inequality for the entropy
production of an open quantum system modeled with a
Lindblad master equation, which follows from the monot-
onicity of the quantum relative entropy under Markovian
noise [34–36]. If we define Σi

S ¼ −Tr½Di
SðτÞðln τ − ln πiÞ�

and ΣA ¼−Tr½DAðτÞðlnτ− lnπeqA Þ�, then Σ ¼ P
iΣi

S þ ΣA

gives the total entropy production of the joint system.
Furthermore, ΣA and Σi

S are time derivatives of relative
entropies under Markovian noise processes. As such, they
are negative, and thus Σ ≥ 0. If we drop all the entropy
production due to A, we obtain Σ ≥

P
iΣi

S ≥ 0. We now
trace overA because we want a bound purely in terms of S.
This operation decreases Σ due to the monotonicity of the
relative entropy under the partial trace [36], giving us
Σ ≥ −

P
Tr½Di

Sðρ�Þðln ρ� − ln πiÞ� ≥ 0. We next note that
in the steady state, Σ ¼ −

P
Tr½Di

Sðρ�Þ ln πi� − _QA=T, in
terms of the heat flow _QA ¼ −Tr½DAðτÞ ln πeqA � out of A’s
reservoir. The relation in Eq. (2) then follows from energy
conservation in the steady state, − _QA ¼ _W þP

_Ei
S . To

obtain Eq. (3), the steps are the same as those above, except
that we minimize the right-hand side of Σ ≥

P
iΣi

S over
the interaction V, and then skip the step in which we trace
over A [15].
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