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We show that discrete synaptic weights can be efficiently used for learning in large scale neural systems,
and lead to unanticipated computational performance. We focus on the representative case of learning random
patterns with binary synapses in single layer networks. The standard statistical analysis shows that this
problem is exponentially dominated by isolated solutions that are extremely hard to find algorithmically.
Here, we introduce a novel method that allows us to find analytical evidence for the existence of subdominant
and extremely dense regions of solutions. Numerical experiments confirm these findings. We also show that
the dense regions are surprisingly accessible by simple learning protocols, and that these synaptic
configurations are robust to perturbations and generalize better than typical solutions. These outcomes
extend to synapses with multiple states and to deeper neural architectures. The large deviation measure also
suggests how to design novel algorithmic schemes for optimization based on local entropy maximization.
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In the past decades, various methods borrowed from
statistical physics have been quite successful in studying the
basic properties of neural-like systems [1]. A well known
general result is that, as is the case for other optimization
problems, training neural networks is qualitatively different
if the variables—the synaptic weights—are constrained to
take discrete values. Yet, the standard equilibrium analysis,
which suggests that the solutions to the constrained problem
would be inaccessible, is at odds with some recent heuristic
algorithmic advances [2-5], which demonstrate that simple
effective protocols may be devised at least in some simple
scenarios. Therefore, it is conceptually important to under-
stand the underlying reason for this discrepancy, which may
be relevant for larger classes of problems.

Furthermore, the modulation of synaptic efficacy is the
elementary computational step for biological information
storage and for large scale machine learning architectures
and neuromorphic devices. While most models assume that
synapses are continuous, it is extremely important to
understand the practical implications of constraining the
synaptic states. Biological considerations and recent exper-
imental evidence [6,7] suggest that synaptic efficacies store
a few bits each (between 1 and 5). Machine learning
applications (especially hardware implementations) could
benefit from using simpler synaptic models and update
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protocols, a research direction that is currently hampered by
the difficulty of devising effective learning protocols.

The learning problem in neural networks with constrained
synapses, even in its simplest formulation—the perceptron
with N binary synapses—is known to be intractable in the
worst case [8]. In the typical case, its equilibrium description
is dominated in the large N limit by an exponential number
(in N) of local minima [9-12], which easily trap standard
search strategies based on free energy minimization, e.g.
Monte Carlo algorithms [13,14] (a situation typical of spin
glass phases, which is common to many hard random
optimization problems [15-17]); moreover, the optimal
synaptic configurations are typically geometrically isolated
(i.e., they have mutual Hamming distances of order V), and
thus are even harder to find for local search strategies [14].

Here, however, we show that the standard analysis does
not capture the properties that are relevant for effective
learning strategies. We introduce a novel large deviation
analysis that reveals the existence of a different class of
solutions, clustered in dense regions. These solutions have
radically different properties from the dominating ones, and
they are accessible to simple learning protocols. Numerical
experiments support the results of this analysis, and show
that the same picture also holds for complex neural
architectures trained on real-world benchmarks. The analy-
sis generalizes to the case of multilevel synapses.

In a more general sense, these findings highlight the key
role that subdominant states have in understanding the
practically relevant properties of a prototypical complex
system. We have no reason to believe that this scenario is
specific to this particular family of problems; in fact, we
also show that an optimization strategy inspired by our
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analysis is also effective on the random K-satisfiability
(K-SAT) problem.

The model—The single layer binary neural network
(perceptron) maps vectors of N inputs &€ {—1,1}"
to binary outputs as z(W,&) = sgn(W -¢&), where W €
{=1,1}" is the vector of synaptic weights. Given aN input
patterns & with u € {1,...,aN} and their corresponding
desired outputs ¢* € {—1,1}*", and defining X (W) =
[12Y, ©(c*2(W,&)), where ©(x) is the Heaviside step
function, the learning problem is that of finding W such
that 7(W, &) = ¢ for all y, i.e., such that X:(W) = 1. The
entries & are independent and identically distributed (i.i.d.)
unbiased random variables. There are two main scenarios
of interest for the distribution of the desired outputs o*:
(1) the classification case, in which they are i.i.d. random
variables, and (2) the generalization (or teacher-student)
scenario, in which they are provided by a “teacher” device,
i.e., another perceptron with synaptic weights W7 . In the
classification scenario, the typical problem has a solution
with probability 1 in the limit of large N up to a. = 0.833
[9], after which the probability of finding a solution drops
to zero. a,. is called the capacity; we also use this term for
the maximum value of a for which a solution can be found
by a specific algorithm. In the teacher-student scenario, the
problem has exponentially many solutions up to
ars = 1.245, after which there is a first-order transition
and only one solution is possible: the teacher itself [1,10].
One additional quantity of interest in this scenario is the
generalization error rate p, = (1/z)arccos|[(1/N)W-W7],
which is the probability that z(W, &*) = (W7, £*) when &*
is a previously unseen input.

The standard zero-temperature equilibrium analysis of
this model is based on a probability measure defined by the
partition function Z.q = >y Xg(W); the typical case is
described by taking the quenched average (log(Zy)), over
the realizations of the patterns.

Effective learning algorithms.—Only a handful of
heuristic algorithms are currently believed—based on
numerical evidence—to be able to solve the classification
problem and achieve a nonzero capacity in the limit of large
N in a subexponential running time: reinforced Belief
Propagation (BP) [2], reinforced Max-Sum [3], SBPI [4],
and CP + R [5] (a brief description of each is provided in
the Supplemental Material [18]). In the classification case,
they achieve capacities between a = 0.69 and a =0.75.
They all share the property of being local and distributed,
and have typical solving times that scale almost linearly
with the size of the input. SBPI and CP + R additionally
have extremely simple requirements (only employing finite
discrete quantities and simple, local, and online update
schemes), making them appealing for practical purposes
and reasonably plausible candidates for biological imple-
mentations. A qualitatively similar scenario holds in the
generalization case, where all these algorithms perform
well except in a finite window 1 < a < 1.5 around ars.

These results are not captured by the standard spin glass
theory; in particular, the effectiveness of the utterly simplified
algorithms SBPI and CP + R is in striking contrast with a
glassy energy landscape in which solutions are isolated.

Numerical experiments.—We investigated this issue
numerically, and found evidence that, in fact, the solutions
found by the algorithms are typically not isolated; rather,
they belong (with high probability at large N) to large
connected clusters of solutions. More precisely: (1) from a
given solution W, a random walk process over neighboring
configurations in the space of solutions can reach distances
of order N from the starting point; (2) the number of
solutions at a distance of order N from W grows exponen-
tially with N (this can be estimated from the analysis of
the recurrence relations on the average growth factor of
the number of solutions at varying distances, and using the
random walk processes for sampling the local properties
relevant to those relations).

Furthermore, we used the standard BP method on single
problem instances to estimate the entropy of the solutions at
varying distance (controlled via a Franz-Parisi potential
[21]) from a reference solution W obtained from a heuristic
solver, and found that the results do not match the
predictions of the equilibrium analysis [14], see Fig. 1.

Teacher-student case.—We also extended the equilib-
rium analysis [14] to the teacher-student scenario, and
found that: (1) typical solutions are isolated for all values of
a even when adding a nonzero stability constraint, as in the
classification case; (2) the teacher device is isolated and
indistinguishable from all other typical solutions except
for the generalization error; and (3) the results of estimates
obtained from BP are consistent with the analytical
calculation when using the teacher as a reference point,
but not when using a solution provided by a heuristic
solver (see the inset in Fig. 1). Finally, the generalization
error for solutions found algorithmically is lower than what
would be expected for a typical solution (see Fig. 3).

Large deviation analysis.—These results indicate that
calculations performed at thermodynamic equilibrium are
effectively blind to the solutions found by the heuristic
algorithms. Traditionally, in the context of replica theory,
similar situations have been addressed by looking for
subdominant states [22]. However, this is insufficient in
the present case.

A different analytical tool is thus needed for obtaining
a description of this regime, which—according to the
numerical evidence—is characterized by regions with a
high density of solutions. Clearly, the statistical weight of
the individual solutions must be modified, by favoring the
ones that are surrounded by a large number of other
solutions. Therefore, we studied the following large-
deviation free energy density function:

F(dy) = - -log (meww d>>‘) )
(W}
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FIG. 1 (color online). Numerical evidence of the existence of
clusters of solutions. Entropy at a given distance from a reference
solution W, in the classification case at a = 0.4. From lgottom to
top: (magenta) theoretical prediction for a typical W; (blue)
numerical estimate based on a random walks on connected
solutions starting from one provided by SBPI, with N = 1001;
(red) estimate from belief propagation using a solution from
SBPI, with N = 10001; (green) theoretical curve for the optimal
W as computed from Eq. (1); and (dotted black) upper bound
(a = 0 case, all configurations are solutions). The random-walk
points underestimate the number of solutions since they only
consider single-flip-connected clusters; the BP curve is lower
than the optimal curve because in the latter W is optimized as a
function of the distance, while in the former it is fixed. Inset:
comparison between a typical solution and one found with SBPI,
in the teacher-student case at @ = 0.5 with N = 1001. Larger
potentials correspond to smaller distances. Top points (red): SBPI
reference solution, with the entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as reference.

where N (W.d) = 3~ 1y, Xe(W)8(W - W.N(1 —2d)) counts
the number of solutions W at normalized Hamming
distance d from a reference solution W (6 is the
Kronecker delta symbol) and y has the role of an inverse
temperature. This free energy describes a system in which
each configuration W is constrained to be a solution, and
has a formal energy density E(W) = —(1/N) log N (W, d)
that favors configurations surrounded by an exponential
number of other solutions, with y controlling the amount of
reweighting. The regions of highest local density are then
described in the regime of large y and small d.

The relevant quantities are computed through the usual
statistical physics tools; of particular importance is the
entropy density of the surrounding solutions, the local
entropy:

Sild:) = (W) = 1 Mog N (W, ). (2)

which is simply given by S;(d.y) = 0,(yF(d,y)). The
signature for the existence of a dense and exponentially
large cluster of solutions is that S;(d,y) >0 in a

neighborhood of d = 0. Another important quantity is
the external entropy, i.e., the entropy of the reference
solutions Sg(d,y) = —y[F(d,y) + S;(d.y)], which must
also be non-negative.

The special case y = 1 is essentially equivalent to the
computation of Ref. [11]; S;(d, y) reduces to the compu-
tation a la Franz-Parisi of [14] in the limit y — 0.

We computed Eq. (1) by the replica method in the
replica-symmetric (RS) ansatz, resulting in an expression
involving 13 order parameters to be determined by the
saddle point method. The analytical expressions and the
details of the computation are reported in the Supplemental
Material [18]. It turns out that, for all values of a and d,
there is a value of y beyond which Sg(d,y) < 0, which is
unphysical and signals a problem with the RS assumption.
Therefore, we sought the value y* = y*(a,d) at which
Sg(d,y*) =0, i.e., the highest value of y for which the
RS analytical results are consistent. In the following, we
thus drop the y dependency.

The solution to the system of equations stemming from
the RS saddle point produces qualitatively very similar
results for both the classification (with @ < a,.) and the
generalization (with @ < arg) case. It displays a number of
noteworthy properties (Fig. 2):

(1) For all a < a,, there is a neighborhood of d =0
where S;(d) > 0, implying the existence of extensive
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FIG. 2 (color online). Large deviation analysis. Local entropy
curves at varying distance d from the reference solution W for
various «a (classification case). Black dotted curve, a = 0 case
(upper bound). Red solid curves, RS results from Eq. (1) (optimal
W). Up to @ = 0.77, the curves are monotonic. At o = 0.78, a
region incorrectly described within the RS ansatz appears (dotted,;
geometric bounds are violated at the boundaries of the part of the
curve with negative derivative). At a = 0.79, the solution is
discontinuous (a gap appears in the curve), and parts of the curve
have negative entropy (dotted). Blue dashed curves, equilibrium
analysis (typical W) [14] (dotted parts are unphysical): the curves
are never positive in a neighborhood of d = 0. Inset: enlargement
of the region around d = 0 (notice the solution for a = 0.79,
followed by a gap).
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clusters of solutions. Furthermore, for all «, the curves for
S;(d) are all approximately equal around d =0; in
particular, they all approximate the case for « = 0 where
all points are solutions. This implies that the clusters of
solutions are extremely dense at their core. This is our chief
result. The size of this dense region shrinks with a and
vanishes at a,.

(2) For large distances, as expected, S;(d) collapses with
a second-order transition onto the equilibrium entropy; i.e.,
this regime is dominated by the typical solutions.

(3) Up to a certain ay (where ay =0.77 in the
classification case and a;; = 1.1 in the generalization case),
the S;(d) curves are monotonic in d. Beyond ay, there is a
transition in which there appear regions of d (dotted in
Fig. 2) that are not correctly described by the RS ansatz
(since geometric bounds are violated; see the discussion in
the Supplemental Material for details [18]), and must be
described at a higher level of replica symmetry breaking
(RSB). We speculate that this transition signals a change in
the structure of the space of solutions: for a < ay, the
densest cores of solutions are immersed in a huge con-
nected structure; for @ > ay, this structure fractures and the
dense cores become isolated and hard to find.

(4) In the teacher-student scenario, the generalization
properties of the optimal reference solutions W are gen-
erally much better than those of typical solutions. This is
clearly shown in Fig. 3, where we also show that the curve
for small d is in striking agreement with that produced
using solutions obtained from the SBPI algorithm. The
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FIG. 3 (color online). Generalization error (teacher-student
scenario). From top to bottom: (blue) typical solution, (red)
optimal W from Eq. (1) at small d (we used d = 0.025 for
numerical reasons and since the curve is not sensitive to the
precise value of d in this regime; this solution disappears after
a = 1.2), (black points) solutions from~ SBPI at N = 10001, 100
samples per point, (magenta) optimal W from Eq. (1) at the value
of d for which §; is maximum (i.e., it equals the equilibrium
entropy), and (green) Bayesian case: error from the average over
all solutions. At arg = 1.245 there is the first-order transition to
perfect learning; between as and @ = 1.5 there is a metastable
regime; the dashed parts of the curves correspond to unphysical
solutions of the RS equations with negative entropy.

generalization error decreases monotonically when increas-
ing d, and it saturates to a plateau when S;(d) becomes
equal to the entropy of the typical solutions [see point
(2) above].

We expect this qualitative and quantitative picture,
especially for @ < ay, to be quite robust. First, these results
are convincingly supported by our numerical findings,
where available. Furthermore, a slightly simplified model
analyzed at a higher level of RSB and at y — oo [see Eq. (3)
below] yields almost indistinguishable results.

The analytical computations are straightforwardly gen-
eralized to the case of multilevel synapses and sparse
patterns, and the results are qualitatively identical [23].

Multilayer network.—These theoretical results seem to
extend to more complex architectures and nonrandom
learning problems. We observed this by heuristically
extending the CP + R algorithm to multilayer classifiers
with L possible output labels, and training these networks
on the MNIST database benchmark [24], which consists of
7 x 10* grayscale images of hand-written digits (L = 10).
A description of the architecture and of the learning
algorithm is provided in the Supplemental Material [18].

We observed that it is indeed very easy to achieve perfect
learning on the whole training data set, and that very good
generalization errors can be reached (e.g., 1.25% with order
107 synapses) despite the binary nature of the synapses and
the fact that we did not specialize the architecture for this
particular data set. Moreover, we did not observe any
overfitting: the generalization error does not degrade by
reaching zero training error, or by using larger networks.

As for the perceptron, we performed a random-walk
process in the space of solutions, with similar results: the
simplified algorithm reaches a solution that is part of a
dense, large connected cluster, and the generalization
properties of the starting solution are better than those of
solutions found in later stages of the random walk (see
Fig. 1B in the Supplemental Material [18]).

Optimization.—We also studied a variant of the free
energy (1) without the constraint on W:

Fuld,y) = _NLyIOg (ZN(W, d)y>. (3)
{w}

The analysis in this case requires at least an additional
step of RSB, and will be presented in detail in a follow-up
work [25]. Still, the results are very close to those reported
for the cpnstrained scenario; furthermore, the probability
that the W in this system are a solution tends exponentially
to 1 with d — 0, despite the removal of the explicit
constraint. This suggests that we can algorithmically
exploit Fy(d,y) to efficiently sample ground states of
the system, and that such a strategy could be applied to
different optimization problems as well.

As the most straightforward proof of concept in this
direction we have developed a Monte Carlo Markov Chain
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algorithm, using the local entropy £ (W) as an objective
function. We call such a procedure the Entropy-driven
Monte Carlo (EAMC) procedure [25]. W is initialized at
random; at each step £(W) is computed efficiently by the
BP algorithm, which is expected to give good results at
small d in dense regions; random local updates of W are
accepted or rejected using a standard Metropolis rule at
fixed temperature y~'. In addition to the binary perceptron
problem, we applied the algorithm to another (radically
different) problem in which standard simulated annealing
(SA) methods are known to fail, namely, the famous
random K-SAT problem. As expected from our analysis,
for the perceptron learning problem EAMC does not suffer
from trapping in local minima even at y = oo, up to at least
a = 0.65, with a running time that scales almost linearly
with the size of the problem (whereas SA solving time
diverges exponentially). For the random K-SAT problem
we explored different regimes, and in particular one (in
4-SAT) where SA method is known to fail: in all cases,
EdMC succeeds in an almost linear number of steps,
outperforming SA method. Preliminary quantitative data
are given in the Supplemental Material [18].
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