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When the constituent spins have an energetic preference to lie along an easy axis, triangular and kagome
lattice antiferromagnets often develop long-range order that distinguishes the three sublattices of the
underlying triangular Bravais lattice. In zero magnetic field, this three-sublattice order melts either in a two-
step manner, i.e., via an intermediate phase with power-law three-sublattice order controlled by a
temperature-dependent exponent ηðTÞ ∈ ð1

9
; 1
4
Þ, or via a transition in the three-state Potts universality

class. Here, I predict that the uniform susceptibility to a small easy-axis field B diverges as
χðBÞ ∼ jBj−½ð4−18ηÞ=ð4−9ηÞ� in a large part of the intermediate power-law ordered phase [corresponding to
ηðTÞ ∈ ð1

9
; 2
9
Þ], providing an easy-to-measure thermodynamic signature of two-step melting. I also show

that these two melting scenarios can be generically connected via an intervening multicritical point and
obtain numerical estimates of multicritical exponents.
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In frustrated antiferromagnets [1,2], magnetic ions
(spins) form a lattice whose geometry causes the dominant
antiferromagnetic interactions between neighbors to com-
pete with each other. This allows weaker further-neighbor
interactions or quantum fluctuations to select complex
patterns of spin order at low temperature. Models of
frustrated easy-axis antiferromagnets [3,4], in which spins
can lower energy by orienting along a fixed axis, provide
interesting examples of this behavior.
Such models are also relevant in other experimental

contexts. For instance, the low-temperature behavior of
monolayers of adsorbed gases on substrates with triangular
symmetry [5–11] has been modeled [12] in terms of a
triangular lattice of Ising spins σz~R ¼ �1 (ẑ components of
spin-half moments ~S~R ¼ ~σ ~R=2) with antiferromagnetic
Ising interactions Jσz~Rσ

z
~R0 between nearest neighbors

[13,14] and weak ferromagnetic Ising interactions between
further neighbors. More recently, the magnetic properties of
honeycomb networks [15–18] of magnetic wires (dubbed
artificial kagome ice) have been analyzed [19–21] in terms
of a similar Ising model on the kagome lattice [22]. In both
examples, further-neighbor couplings cause the Ising spins
to develop ferrimagnetic three-sublattice order at low
temperature, i.e., freeze into a pattern which distinguishes
the three sublattices of the underlying triangular Bravais
lattice and gives rise to a small net moment along the
easy axis.
Several other easy-axis spin systems on triangular and

kagome lattices exhibit ferrimagnetic three-sublattice order
[23–34] or closely related antiferromagnetic (no net easy-
axis moment) three-sublattice order [35]. In zero field
(B ¼ 0) along the easy axis, a Ginzburg-Landau theory
[36–38] for the three-sublattice order parameter predicts
that this ordering transition is described by a sixfold

anisotropic effective model of ferromagnetically coupled
XY spins [39] or, equivalently, by a generalized six-state
clock model [40–43]. Rather unusually, such six-state clock
models have multiple generic possibilities for continuous
transitions: order is lost either via a two-step melting
transition, with an intermediate phase characterized by
power-law order [39], or via a sequence of two distinct
transitions, one of which is in the three-state Potts univer-
sality class and the other in the Ising universality class
[40,41]. Perhaps motivated by this, the melting of three-
sublattice order has been studied in a variety of triangular
and kagome lattice systems for over three decades now. In
some examples [12,23–26,35], three-sublattice order is
known to melt in a two-step manner via a sizeable
intermediate phase with power-law three-sublattice
order controlled by a temperature-dependent exponent
ηðTÞ ∈ ð1

9
; 1
4
Þ. In other examples with ferrimagnetic

three-sublattice order, this order is lost via a three-state
Potts transition, while residual ferromagnetism is lost via
an Ising transition [19–21].
In this Letter, I analyze the melting of three-sublattice

order in easy-axis antiferromagnets on triangular and
kagome lattices using a new coarse-grained description
that explicitly keeps track of the uniform easy-axis mag-
netization mode whose fluctuations are coupled to fluctua-
tions of the three-sublattice order parameter. Using this
description, which goes beyond the standard Ginzburg-
Landau theory, I demonstrate that these two very different
melting processes can be generically connected via an
intervening multicritical point M (Fig. 2) with central
charge [44] cM ∈ ð1; 3

2
Þ. Although the generalized six-state

clock model correctly captures other generic ways [40,41]
in which these two very different melting processes can be
separated from each other in the phase diagram of such
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three-sublattice ordered systems, it fails to account for the
existence of M. This underscores the importance of
treating the uniform magnetization mode on the same
footing as the three-sublattice order parameter.
I obtain numerical estimates of multicritical exponents

and argue that such multicritical melting may be exper-
imentally accessible in artificial kagome-ice systems if the
strengths of nearest and next-nearest exchange interactions
can be increased relative to the long-range dipolar inter-
actions. Additionally, for ηðTÞ ∈ ð1

9
; 2
9
Þ in the power-law

ordered phase associated with two-step melting, I show that
the uniform susceptibility to a small easy-axis field B
diverges as χðBÞ ∼ jBj−½ð4−18ηÞ=ð4−9ηÞ�. I also argue that this
easy-to-measure thermodynamic signature is of potential
experimental relevance in the context of three-sublattice
ordering of nearly half-filled monolayers of adsorbed gases
on triangular substrates, and in the context of experimental
realizations of three-sublattice order in S ¼ 1 Heisenberg
antiferromagnets with strong single-ion anisotropy on the
triangular lattice.
Order parameters and coarse-graining.—I use the

convention of Fig. 1 for labeling the sites (unit cells) ~R ¼
mêx þ nêy of the triangular (kagome) lattice and for
labeling the three basis sites α ¼ 0; 1; 2 in each unit cell
of the kagome lattice. With this convention, the complex
three-sublattice order parameter ψ ≡ jψ jeiθ and the ferro-
magnetic order parameter Mz are defined as ψ ¼
−
P

~Re
ið2π=3ÞðmþnÞSz~R and Mz ¼ P

~RS
z
~R
on the triangular

lattice, while ψ ¼ −
P

~R;αe
ið2π=3Þðmþn−αÞSz~R;α and Mz ¼

P
~R;αS

z
~R;α

on the kagome lattice. Our coarse-grained

description will be written in terms of an effective
Hamiltonian defined on a lattice whose sites ~r represent
clusters of spins of the original triangular or kagome
magnet. In this description, each cluster is characterized
by an Ising variable τ~r ¼ �1 representing the direction of

the local easy-axis magnetization Mz
cluster and by an angle

θ~r that represents the phase of the local three-sublattice
order parameter ψ cluster. Comparison with long-wavelength
properties of specific microscopic models is facilitated by
choosing clusters that themselves form a coarse-grained
triangular lattice, since this preserves the symmetries of the
underlying triangular Bravais lattice in both triangular and
kagome lattice systems.
Ginzburg-Landau theory.—Let us begin by summariz-

ing in this language the standard Ginzburg-Landau theory
for three-sublattice ordering [36–38]: transformation prop-
erties of ψ under global spin-flip and lattice symmetry
operations fix the form of the effective HamiltonianHxy for
θ~r. Leaving out certain chiral perturbations [45–47] that are
not expected to be relevant [48] for the transitions of the
lattice magnets studied here, Hxy may be written as

Hxy ¼ −Jxy
X

h~r~r0i
cosðθ~r − θ~r0 Þ − h6

X

~r

cosð6θ~rÞ; ð1Þ

where h~r~r0i are nearest-neighbor links of our coarse-
grained triangular lattice. The effective stiffness Jxy > 0

(encoding the energetic preference for three-sublattice
order) and the sixfold anisotropy h6, whose sign selects
between ferrimagnetic three-sublattice order (with
θm ¼ 2πm=6) and antiferromagnetic three-sublattice order
[θm ¼ ð2mþ 1Þπ=6], are both set by quantum fluctuations
and subdominant further-neighbor couplings in the
microscopic Hamiltonian. In this approach, the relative

values of Jxy and its higher harmonics JðpÞxy [coefficients of
− cosðpθ~r − pθ~r0 Þ for p ¼ 2; 3] determine the nature of the
melting process. These higher harmonics are omitted from
Hxy displayed above since they are not crucial for our
subsequent discussion.
New effective Hamiltonian.—Next, I note that this

standard Ginzburg-Landau description does not take into
account the uniform magnetization mode whose fluctua-
tions are coupled in a crucial way to fluctuations of the
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FIG. 1 (color online). Color-coded symbols on sites give the
value of hSz~ri in the presence of ferrimagnetic (θ ¼ 0) or
antiferromagnetic (θ ¼ π=6) three-sublattice order in spin-S
triangular (kagome) lattice easy-axis antiferromagnets. These
ordering patterns distinguish between the three sublattices of
the underlying Bravais lattice of sites (up-pointing triangles).
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FIG. 2 (color online). (a) Predicted structure of the T − JIsing
phase diagram of Heff for h ¼ 0 and fixed Jxy and Jθτ. Phase
boundaries of Heff are depicted by color-coded solid lines, while
those of HIsing and Hxy are displayed as dashed lines. (b) Known
T − h3 phase diagram of Hxy − h3

P
~r cosð3θ~rÞ showing the

three-state Potts line Tcðh3Þ. Path L in (a) maps to the eponymous
path in (b).
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three-sublattice order parameter. This key observation leads
me to a new coarse-grained effective model:

Heff ¼ Hxy þHIsing − Jθτ
X

~r

τ~r cosð3θ~rÞ;

where HIsing ¼ −JIsing
X

h~r~r0i
τ~rτ~r0 − h

X

~r

τ~r; ð2Þ

with h ∝ B. To understand the rationale for the form of this
effective Hamiltonian, it is useful to first note that Heff has
the same S3 × Z2 symmetry as Hxy and reduces, in the
double limit h6; Jθτ → ∞, to a generalized six-state clock
model studied earlier [40,41]. However, the space of states
at each site of Heff is enlarged by the presence of τ~r to
correctly account for the fact that the direction ofMz

cluster is
correlated with the phase of ψ cluster but not completely tied
to it. The microscopic origin of various terms can now be
understood as follows: JIsing > 0 encodes the effect of
subleading ferromagnetic interactions of the microscopic
magnet, which tend to favor ferrimagnetic three-sublattice
order. If h6 > 0, it is likely to be accompanied by a sizeable
positive value of JIsing in Heff (since ferrimagnetic three-
sublattice order corresponds to h6 > 0 in Hxy). Conversely,
negative h6, favored by quantum fluctuations in some
examples [35], is likely to be accompanied by negligibly
small JIsing. The coupling Jθτ > 0 correctly captures the
fact that the values θ ¼ 0; 2π=3; 4π=3 (π=3; π; 5π=3),
characteristic of ferrimagnetic three-sublattice order, are
associated with a positive (negative) easy-axis magnetiza-
tion, while the phase choices θ ¼ ð2mþ 1Þπ=6, character-
istic of antiferromagnetic three-sublattice order, are not
associated with any net easy-axis magnetization (Fig. 1).
Phase diagram of Heff .—To deduce the structure of the

h ¼ 0 phase diagram of Heff [Fig. 2(a)] in the T − JIsing
plane (with Jxy ¼ 1) for fixed Oð1Þ values of Jθτ and h6, I
start with the known phase diagrams of Hxy and HIsing and
analyze the effects of a nonzero Jθτ. To this end, recall that
HIsing develops long-range order in τ for T < Tτ, with long-
distance properties of the critical point at Tτ described by a
fixed-point free-energy functional F1=2 ¼

R
d2xF 1=2 with

central charge c ¼ 1=2. Similarly, Hxy develops sixfold
symmetry-breaking long-range order in θ for T < Tθ1,
which melts via an intermediate phase with power-law
correlations: hei(θð~rÞ−θð0Þ)i ∼ 1=j~rjηðTÞ with ηðTÞ ∈ ð1

9
; 1
4
Þ for

temperatures T ∈ ðTθ1; Tθ2Þ [42,43,49]. Long-wavelength
properties of this power-law ordered phase are controlled,
in renormalization group language, by a c ¼ 1 line of fixed
points [39], with effective free energy FKT ¼ R

d2rFKT,
where

FKT=T ¼ 1

4πg
ð∇θÞ2; ð3Þ

with gðTÞ ∈ ð1
9
; 1
4
Þ corresponding to T ∈ ðTθ1; Tθ2Þ. This

fixed line has power-law correlations hei(θð~rÞ−θð0Þ)i ∼

1=rηðgÞ with ηðgÞ ¼ g, which render the sixfold sym-
metry-breaking perturbation h6 cosð6θ~rÞ irrelevant for g >
1=9 and vortices in θ irrelevant for g < 1=4 [39]. However,
the threefold symmetric perturbation h3 cosð3θ~rÞ is relevant
everywhere on this fixed line [39], implying that long-range
order sets in at infinitesimal h3 when T < Tθ2. In contrast,
for fixed T > Tθ2, long-range order sets in via a three-state
Potts transition [39] [Fig. 2(b)] only when a threshold
h3cðTÞ is crossed; this defines a three-state Potts critical line
Tcðh3Þ in the ðT; h3Þ phase diagram of Hxy [Fig. 2(b)].
Therefore, our analysis splits naturally into two cases, Tτ ≲
Tθ2 and Tτ ≳ Tθ2, and relies crucially on the observation
that long-range order of θ in Hxy leads to an external
magnetic field of effective strength heff ≡ Jθτhcosð3θÞi
acting on τ in HIsing, while long-range order of τ in
HIsing perturbs Hxy by a threefold symmetric term
−P~rh3eff cosð3θ~rÞ with h3eff ≡ Jθτhτi.
Tτ ≲ Tθ2.—If HIsing is in a short-range correlated para-

magnetic phase in the entire temperature range ðTθ1; Tθ2Þ,
i.e., if Tτ ≲ Tθ1, a nonzero Jθτ only renormalizes the value
of gðTÞ that controls the power-law correlators of θ in this
regime, and when the temperature is lowered below Tθ1,
long-range order of θ in Hxy gives rise to an effective field
heff ≡ Jθτhcosð3θÞi inHIsing, converting the Ising transition
at Tτ to a smooth crossover. On the other hand, if Tθ1 ≲ Tτ,
long-range order of τ below Tτ leads to a threefold
symmetric perturbation h3eff of Hxy, which immediately
causes Hxy to develop long-range order in θ [Fig. 2(b)].
Thus, when Tτ ≲ Tθ2, Heff is expected to display a

sixfold symmetry-breaking long-range ordered state for
T < Tc1, which undergoes a two-step melting transition via
an intermediate power-law ordered phase [corresponding to
T ∈ ðTc1; Tc2Þ] with an exponent ηðTÞ that increases from
ηðTc1Þ ¼ 1

9
to ηðTc2Þ ¼ 1

4
. The value of Tc1 is set (with

deviations of order Jθτ) by the larger of Tθ1 and Tτ, while
that of Tc2 is approximately set by Tθ2.
Power-law ordered phase.—Long-wavelength proper-

ties of Heff in this power-law ordered intermediate phase
can be described quite generally (for either sign of h6) by an
effective free-energy density

F τKT=T ¼ FKT=T − cθττ~r cosð3θ~rÞ: ð4Þ

Although a nonzero cθτ leads, upon tracing over τ, to the
sixfold term cosð6θ~rÞ, which is irrelevant all along the fixed
line parametrized by cθτ ¼ 0 and gðTÞ ∈ ð1

9
; 1
4
Þ [as in

Eq. (3)], I choose to retain a bare cτθ ≠ 0 explicitly in
Eq. (4) since this “dangerously irrelevant” coupling
controls the long-distance correlations of τ~r along this
fixed line. Indeed, the nonzero value of cθτ in F τKT causes
τ~r to inherit the power-law correlations of cosð3θ~rÞ
for all T ∈ ðTc1; Tc2Þ: hτ~rτ0i ∼ he3iðθ~r−θ0Þi ∼ 1=r9gðTÞ.
Ferromagnetic couplings between the Ising spins are
not explicitly included in F τKT=T since the Ising bond
energy Eh~r1~r2i ≡ τ~r1τ~r2 has rapidly decaying correlations
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hEh~r1~r2iEh~r3~r4ii ∼ 1=r36g (r is the distance between bonds
h~r1~r2i and h~r3~r4i) that render these couplings irrelevant
along this fixed line. Just below g ¼ 1=9 (i.e., for T < Tc1),
the ferromagnetic couplings between the τ~r and the sixfold
anisotropy term cosð6θ~rÞ both become relevant. This
signals the onset of sixfold symmetry-breaking long-range
order in Heff .
Singular susceptibility.—For ηðTÞ < 2

9
in this power-law

ordered intermediate phase of Heff , the foregoing implies
that power-law correlations of τ decay slowly enough that
they lead to a divergent contribution χsing ∼ L2−9η to the
finite-size susceptibility χL of an L × L system at
h ¼ 0. This implies χLðTÞ ¼ χregðTÞ þ bðTÞL2−9ηðTÞ for
ηðTÞ ∈ ð1

9
; 2
9
Þ. When an external field h is turned on in this

regime, it perturbs F τKT with a threefold symmetric per-
turbation Jθτχregh cosð3θ~rÞ. This drivesHeff to a long-range-
ordered state with correlation length ξðhÞ ∼ jhj−1=λ3ðgÞ,
where λ3ðgÞ ¼ 2 − 9g=2. Beyond this correlation-length
scale,Heff resembles a three-state Potts model in its ordered
state [39]. Therefore, for small nonzeroh, χsing will be cut off
at length scales of order this correlation length ξðhÞ, giving
rise to a thermodynamic susceptibility that scales as
½ξðhÞ�2−9ηðTÞ at small h. For the thermodynamic easy-axis
susceptibility of the microscopic easy-axis antiferromagnet,
the foregoing analysis thus predicts

χðBÞ ∼ jBj−f½4−18ηðTÞ�=½4−9ηðTÞ�g ð5Þ

at small jBj for ηðTÞ ∈ ð1
9
; 2
9
Þ. This prediction identifies an

experimentally useful signature of two-stepmelting of either
type (ferrimagnetic or antiferromagnetic) of three-sublattice
order in triangular and kagome lattice easy-axis magnets.
In particular, it applies to the S ¼ 1 triangular lattice
Heisenberg antiferromagnet with strong single-ion
anisotropy [29,33] and to the triangular lattice Ising anti-
ferromagnet with further-neighbor couplings [12]. It would
therefore be interesting to identify quasi-two-dimensional
magnets in the Ca3Co2O6 family [50,51] (with an angular
momentum J ¼ 1 ion at one Co site and a nonmagnetic ion
at the other) which could provide experimental realizations
of the former. It would also be interesting to identify new
combinations of substrate and adsorbate for which mono-
layer densities closer to half-filling (than hitherto achiev-
able [5–11]), corresponding to B ≪ 1 in the latter, could be
reached for monolayers of adsorbed gases on triangular
substrates.
Tτ ≳ Tθ2.—In this case,Heff develops long-range order in

τ via a transition in the Ising universality class at TcI
[Fig. 2(a)], with the value of TcI set by Tτ (with deviations
of order Jθτ). For T < TcI, the spontaneous magnetization
hτi perturbsHxy with the threefold field h3eff . Lowering the
temperature below TcI along path L in the phase diagram of
Heff [Fig. 2(a)] therefore corresponds to moving along the
eponymous path L in the known [39] phase diagram of
Hxy − h3

P
~r cosð3θ~rÞ [Fig. 2(b)]. This key observation

immediately leads to two conclusions: First, Heff must
develop long-range order in θ at a lower temperature TcP <
TcI via a three-state Potts transition [Fig. 2(a)]. Second, these
Ising and three-state Potts transition lines (TcI andTcP) must
meet the phase boundaries of the power-law ordered phase
(Tc2 and Tc1) at a single multicritical point M [Fig. 2(a)].
Multicritical point.—The fixed point theory FM that

controls long-distance properties of M can be reached
from the c ¼ 3=2 theory F1=2 þ FKT (with g ¼ 1=4) by
turning on the relevant perturbation Jθτ. The c theorem [44]
therefore predicts that the central charge of FM obeys
cM < 3

2
. Since FM must have a relevant direction leading

from it to the c ¼ 1 theory FτKT, the c theorem also predicts
cM > 1. At M, the correlation functions Cτð~rÞ ¼
hτð~rÞτð0Þi and Cpθð~rÞ ¼ heipθð~rÞe−ipθð0Þi (p ¼ 1; 2; 3) are
expected to have the long-distance forms: Cτð~rÞ ¼ 1=rητ ,
Cpθð~rÞ ∼ 1=rηpθ (with η3θ ¼ ητ on symmetry grounds).
Setting Jxy ¼ h6 ¼ 1.0, Jθτ ¼ 0.25, and parametrizing
JIsing ¼ fxyTθ1=Tτ and T ¼ fIfxyTθ1, with Tθ1 ¼ 1.04
and Tτ ¼ 3.6409, I have performed extensive
Monte Carlo simulations of Heff to locate and study M.
Figure 3 displays power-law fits for the L dependence of
Cτð~rLÞ and Cpθð~rLÞ at separation ~rL ¼ ðL=3Þêx on peri-
odic L × L triangular lattices at my best estimate for M,
given by ½fMxy ; fMI � ≈ ½1.5570ð8Þ; 1.0061ð5Þ�. Such fits
yield the following estimates for multicritical exponents:

η3θ ¼ ητ ≈ 0.201ð20Þ; ηθ ≈ 0.258ð5Þ;
η2θ ≈ 0.353ð6Þ:

ð6Þ

This set of exponents is clearly different from the well-
known exponents in the power-law ordered phase

FIG. 3 (color online). L dependence of Cτð~rLÞ and Cpθð~rLÞ
(p ¼ 1, 2, 3) at separation ~rL ¼ êxðL=3Þ on periodic L × L
triangular lattices, evaluated at the estimated location
½fMxy ; fMI � ¼ ½1.5570; 1.0061� of the multicritical point of Heff

with Jxy ¼ h6 ¼ 1.0, Jθτ ¼ 0.25 (notation as in text). Lines
denote fits to 1=Lητ and 1=Lηpθ , respectively, using
η3θ ¼ ητ ¼ 0.201, ηθ ¼ 0.258, and η2θ ¼ 0.353. C2θ (C3θ) is
rescaled by a factor of 7 (factor of 10) for clarity.
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[ηpθ ¼ p2ηðTÞ] or on the three-state Potts line
(η2θ ¼ ηθ ¼ 4=15) or the Ising line (η3θ ¼ ητ ¼ 1=4).
I close by noting an intriguing possibility: since three-

sublattice order melts via a three-state Potts transition in the
kagome Ising antiferromagnet with dipolar interactions
[19–21], while the analogous short-ranged model with
nearest- and next-nearest-neighbor exchange couplings
exhibits two-step melting behavior [21,23,24], it appears
likely that such multicritical melting could be seen in
artificial kagome-ice systems if the strength of the first- and
second-neighbor exchange interactions could be increased
relative to the long-range dipolar couplings (whose values
are fixed by magnetostatics).
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