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We demonstrate that spin-orbit coupled electrons in a magnetically doped system exert a spin torque on
the local magnetization, without a flowing current, when the chemical potential is modulated in a magnetic
field. The spin torque is proportional to the anomalous Hall conductivity, and its effective field strength
may overcome the Zeeman field. Using this effect, the direction of the local magnetization is switched by
gate control in a thin film. This charge-induced spin torque is essentially an equilibrium effect, in contrast to
the conventional current-induced spin-orbit torque, and, thus, devices using this operating principle
possibly have higher efficiency than the conventional ones. In addition to a comprehensive phenomeno-
logical derivation, we present a physical understanding based on a model of a Dirac-Weyl semimetal,
possibly realized in a magnetically doped topological insulator. The effect might be realized also in
nanoscale transition materials, complex oxide ferromagnets, and dilute magnetic semiconductors.
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Introduction.—The electric control of spin magnetiza-
tion aims to be used in next-generation magnetic devices,
allowing information to be written electronically. Spin-
transfer torque random-access memory has emerged as a
potential candidate for such versatile devices: a spin-
polarized current exerts a spin-transfer torque on the
magnetization and switches the direction via the exchange
interaction [1]. It is known that the driving spin-polarized
current needs to exceed a threshold current, and a noncol-
linear magnetization structure, such as spin valves, tunnel
junctions, or domain walls, is required. These might be
central issues for low-power-consumption magnetic-
recording devices. The spin-orbit torque has been recently
proposed to control the magnetization direction without
noncollinear configurations. The threshold current density
is ∼106 A=cm2 for a number of magnetic materials [2], so
much effort has been made to search for materials having
high efficiency [3–5].
In this Letter, we shall propose an alternative mechanism

to switch the magnetization by electrical means in anoma-
lous Hall ferromagnets consisting of local spins and
itinerant band electrons. The anomalous Hall effect
(AHE) occurs in solids with broken time-reversal sym-
metry, typically in a ferromagnetic phase, as a consequence
of spin-orbit coupling [6]. In particular, the intrinsic AHE
originates to the spin-orbit coupled band structure and can
be described in terms of Berry curvatures [7]. In many
cases, the intrinsic effect appears to be the dominant
contribution to the AHE in the low-temperature clean limit
of metallic ferromagnets [6].
We derive a generic expression of the spin torque term

induced by the chemical potential modulation and a
magnetic field in anomalous Hall ferromagnets based on
a comprehensive phenomenological argument. This torque
is proportional to the anomalous Hall conductivity. When

this torque effect overcomes the Zeeman effect, the
magnetization can be controlled locally, pointing parallel
and antiparallel to the external magnetic field, depending
on the sign of the chemical potential modulation. Devices
using this operating principle are free from joule heating
and, thus, possibly have a much higher efficiency than
conventional ones. As an example of spin-orbit coupled
band electrons, we consider a Weyl semimetal [8–12]
realized in magnetically doped topological insulator mate-
rials [13], where a physical understanding and an estima-
tion of the effective field are given.
Charge-induced spin torque.—In isotropic ferromag-

nets, the off-diagonal conductivity tensor σij (i ≠ j) may
be expressed in the form [6]

σij ¼ ϵijkσAHEM̂k ð1Þ

in a vanishing magnetic field, where M̂ is the normalized
directional vector of the magnetization, and σAHE is the
magnitude of the anomalous Hall conductivity. In the
following, we ignore the disorder effects and consider
only the intrinsic contribution at zero temperature.
According to the Strěda formula [7,14], the intrinsic Hall

conductivity controls the charge density n induced when a
uniform magnetic field B is applied:

σij ¼ −ecϵijk
∂n
∂Bk

; ð2Þ

where c is speed of light, and e is the electron charge.
Combining these two relations, we obtain the relation
between the electron density and the magnetization,

nind ¼ −
σAHE
ec

M̂ · B: ð3Þ
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In a magnetic field, the right-hand side of Eq. (1) is replaced
by the σAHEM̂k þ σOHEB̂k. However, the second term,
the ordinary contribution σOHE ∝ jBj, appears to be of
second order in the field in Eq. (3) and is ignored since we
focus on the linear response regime. These relations are
derived in uniform systems, but when the magnetic field
and magnetization vary slowly in space and time, it is
natural to assume that these are locally applicable. In the
following, σAHE denotes the magnitude of the anomalous
Hall conductivity in the ideal uniform case.
In thermodynamics, the number of particles is conjugate

to the chemical potential described by the thermodynamic
potential: −

R
d3xnindδμF. By substituting Eq. (3) into this

relation, we derive a generic thermodynamic potential
for charge and spin coupling in anomalous Hall ferromag-
nets as

ΩCS ¼
Z

d3x
σAHE
ec

δμFM̂ · B; ð4Þ

where δμF is a local chemical potential, which is defined as
a deviation from the Fermi energy. When the magnetization
is uniform while the chemical potential varies in space,
Eq. (4) can be rewritten as ΩCS ¼ −ð1=cÞ R d3xA · jAHE,
where jAHE ¼ σAHEE × M̂ is the anomalous Hall current,
E ¼ ∇δμF=e, and A is the vector potential. Therefore,
Eq. (4) describes the anomalous Hall effect. From a
microscopic model, Eq. (4) may be obtained by integration
over the fermionic degrees of freedom.
Coupling between the modulation of the chemical

potential and the magnetization direction described by
Eq. (4) indicates the possibility of the magnetization
switching by gate tuning in a ferromagnetic thin film.
The coupling energy of the magnetization and an applied
magnetic field is Efield ¼ EZeeman þΩCS. Here, EZeeman ¼
−
R
d3xρsgμBSM̂ · B is the Zeeman term, and ρs, g, and S

being the density, the Lande factor, and spin of the
magnetic moments, respectively. In addition to the
Zeeman torque TZeeman ¼ gμBSB × M̂, there exists an
induced torque term given by

TCS ¼ −
δΩCS

δðρsM̂Þ × M̂

¼ −
σAHE
ecρs

δμFðxÞB × M̂ ð5Þ

in a magnetic field. This is the main finding of the
present work.
In a thin film, the chemical potential can be locally tuned

by gating. When σAHE and δμF are large enough, depending
on the sign of δμF, the local magnetization points parallel or
antiparallel to the external magnetic field. This torque is
contrasted to the current-induced spin-transfer torque [1],
which can be expressed as TSTT ¼ ðℏS=eÞðj · ∇ÞM̂ in the
adiabatic limit. For TSTT, a constant electric current j is

needed which generates the joule heating, while TCS
requires only the chemical potential modulation; the effect
is essentially dissipationless.
Microscopic derivation in Weyl semimetals.—In the rest

of the Letter, we consider the torque term Eq. (5) from a
microscopic point of view, where the system consists of
spin-orbit coupled itinerant electrons and local spins
interacting via exchange coupling

Hexc ¼ JSxsM̂ðx; tÞ · σ: ð6Þ

Here, J is the exchange coupling constant, xs ¼ ρsa3 is the
ratio of the magnetic dopants, a3 being the volume of the
unit cell, and σ ¼ ðσx; σy; σzÞ are Pauli matrices describing
the electron spin degrees of freedom. The torque induced
by exchange coupling is given by −JSa3hσi × M̂. It
has been proposed that in the presence of spin-orbit
coupling, a flowing current produces a nonequilibrium
spin density hσineq and, thus, the spin-orbit torque:
TSOT ¼ −JSa3hσineq × M̂ [2–4]. By contrast, Eq. (5) is
induced by the modulation of the chemical potential and an
external magnetic field, where the spin density hσi is finite
in equilibrium.
As a concrete example of spin-orbit coupled ferromag-

nets, we consider a Weyl semimetal and show that a finite
spin density is generated by chemical potential tuning. A
simplified model consists of a Dirac semimetal (DSM) and
local spins of magnetic dopants [13]. This can be related to
magnetically doped topological insulators [15] such as
chromium-doped Bi2Se3 [16–18] or chromium-doped
ðBi; SbÞ2Te3 [19], where by doping Cr the strength of
spin-orbit coupling is reduced and the original band gap
may collapse at a certain range of the doping ratio [13,20].
The low-energy effective Hamiltonian is given as
HWSM ¼ HDSM þHexc. Here,

HDSM ¼ vFτzσ ·

�
−iℏ∇þ e

c
Aðx; tÞ

�
þ eϕðx; tÞ ð7Þ

describes massless Dirac fermions in three dimensions
[15,21–24], where ðA;ϕÞ is the electromagnetic potential,
vF is the velocity, and the chirality τz ¼ �labels the two-
degenerate Weyl nodes. We note that this model differs
from the Weyl semimetal phase proposed in a topological
insulator multilayer [9]. In the latter system, the magneti-
zation needs to point perpendicularly to the layers, and,
thus, the off-diagonal conductivity tensor cannot be
expressed in the form of Eq. (1).
The proposed phenomena can be understood from the

energetic point of view. Here we consider Dirac fermions in
a uniform magnetic field pointing in the þz direction.
Defining the ladder operator a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c=2ℏeBz

p ðπx − iπyÞ
satisfying ½a; a†� ¼ 1, where π ¼ −iℏ∇þ ðe=cÞAþ
τzðJSxs=vFÞM̂, the Hamiltonian for a Weyl semimetal
can be written as [10,25,26]
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HWSM ¼ τzℏvF

0
B@ kz þ τz

JSxs
ℏvF

M̂z

ffiffiffiffiffiffiffi
2eBz
ℏc

q
affiffiffiffiffiffiffi

2eBz
ℏc

q
a† −kz − τz

JSxs
ℏvF

M̂z

1
CA: ð8Þ

The zeroth Landau level states are obtained as ð0; j0iÞt in
the spinor representation, where the jni’s are the eigenstates
of the number operator a†a. The energy dispersion is given
by

E0ðkzÞ ¼ −τzℏvFkz − JSxsM̂z: ð9Þ

Typical situations are illustrated in Fig. 1(a) M̂z < 0
(antiparallel to B) and 1(b) M̂z > 0 (parallel to B). As
represented by solid lines, the energies of the zeroth Landau
level depend on the sign of M̂z. By contrast, nonzero
Landau levels

EnðkzÞ ¼ �ℏvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kz þ

JSxs
ℏvF

τzM̂z

�
2

þ 2eBz

ℏc
jnj

s
ð10Þ

represented by the dashed lines in Fig. 1 are particle-hole
symmetric, and the spectra do not differ for the opposite
sign of M̂z.
When the modulation of the chemical potential δμF is

introduced, electrons move from the high-potential
region [δμF=ð−eÞ > 0] to the low-potential region
[δμF=ð−eÞ < 0]. In the absence of the exchange interac-
tion, all the Landau levels shift equally in energy by δμF. In
the presence of the exchange interaction, on the other hand,
the density of electrons depends on the value of M̂z as
expected from Eq. (9), and, thus, there is a correlation

between M̂z and δμF. To see this quantitatively, we count
the number of electrons changed by M̂z from the case of
M̂z ¼ 0, fixing the magnetic field Bz (> 0). Only the zeroth
Landau level depends on the sign of M̂z and, thus, modifies
the density of electrons given by

nind ¼
eBz

hc
ρð1DÞF ΔE; ð11Þ

where ΔE ¼ JSxsM̂z is the energy shift of the zeroth
Landau level. Here, eBz=hc is the degeneracy of the zeroth
Landau level per area, and ρð1DÞF ¼ 2=2πℏvF is the density
of states of one-dimensional fermions, the product of them
being the density of states in three dimensions.
Equation (11) is consistent with Eq. (3) and the anomalous
Hall conductivity

σAHE ¼ −
e2JSxs
2π2ℏ2vF

ð12Þ

obtained fromHWSM [13]. To minimize the total energy, M̂
points in the direction of −B in the high-potential region
[δμF=ð−eÞ > 0], while M̂ points in the direction of þB in
the low-potential region [δμF=ð−eÞ < 0], as depicted in
Fig. 1(c). The energy gained corresponds to ΩCS.
The thermodynamic potential ΩCS can be also derived

from microscopic field theory. The effective action for
the electromagnetic response in a Weyl semimetal has
been derived as [10,26–28] Sθ ¼ ðe2=4π2ℏcÞ R dtd3xθ
ðx; tÞEðx; tÞ · Bðx; tÞ. Here, θðx; tÞ is the axion field,
which is related to the magnetization direction in our
model as

1

2
∇θðx; tÞ ¼ JSxs

ℏvF
M̂ðx; tÞ ¼ 1

ℏvF

∂Hexc

∂σ : ð13Þ

The procedure to obtain the axion termSθ is as follows. First,
in the Lagrangian formalism

SWSM ¼
Z

dtd3xψ†½iℏ∂t − ðHDSM þHexcÞ�ψ ; ð14Þ

we remove the exchange term Hexc by the chiral gauge
transformation; ψ → eiτzθ=2ψ where θ satisfies the condition
Eq. (13). In the Grassman functional theory, the Jacobian
Jθ is introduced by this transformation. After proper
regularization [29], the axion term is given by
Sθ ¼ SWSM − SDSM ¼ −i ln Jθ, where SDSM is SWSM at
J ¼ 0. The charge current is derived from Sθ as
j ¼ cðδSθ=δAÞ ¼ ðe2=4π2ℏÞ∇θ × E. With Eq. (13), we
obtain the anomalous Hall conductivity Eq. (12). By sub-
stituting Eq. (12) for Eq. (4), the thermodynamical potential
ΩCS for Weyl semimetals can be obtained, which is in
agreement with Sθ when the electric field is written
as E ¼ ∇δμF=e.

FIG. 1. The energy dispersion of the Landau levels as a function
of kz for (a) M̂z < 0 and (b) M̂z > 0. (c) The modulation of the
chemical potential as a function of the position.
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With typical material parameters for Cr-doped Bi2Se3,
we quantitatively estimate the ratio of the effective
magnetic field to the external magnetic field (xs ¼ 0.1,
J ¼ 2.0 eV, ℏvF ¼ 2.2 eVÅ−1 and ρs ¼ 1.1 × 10−4 Å−3)
[16,17,19,21,22]

Beff ≡ 1

gμBSρs

δ

δM̂
ðEZeeman þΩCSÞ

≈
�
1 − 6.5 ×

�
δμF
½eV�

��
B: ð15Þ

If the chemical potential can be shifted by ∼0.2 eV, the
direction of the effective field Beff and, thus, the magneti-
zation are reversed. In the above arguments, we have
neglected the Zeeman interaction for band electrons. In
strongly spin-orbit coupled systems, it is known that the
Lande factor of itinerant electrons can be larger than that in
a vacuum. Nevertheless, the typical energy scale of the
Zeeman effect in ðBi; SbÞ2Te3 is g�μB ≈ 1 meV=T [21,22],
which is negligibly small compered to the exchange
interaction JSxs ≈ 500 meV in Eq. (6) [16].
In the above argument, we consider only the intrinsic

contribution. In the presence of disorder, there exists the
extrinsic contributions known as the skew-scattering
and side-jump effects. Generally, the Hall conductivity
consists of two parts σIij ¼ ðℏe2=4πÞTr½viGþvjðGþ −
G−Þ − vjG−viðGþ −G−Þ� and σIIij ¼ ðie2=4πÞTr½ðxivj −
xjviÞðGþ −G−Þ� [14], where G� ¼ ðEF � i0 −HÞ−1
and EF is the Fermi energy. σIij is associated with states
on the Fermi surface. σIIij, on the other hand, is the
contribution of all states below the Fermi energy and is
a thermodynamic equilibrium property of the ferromagnet.
In most cases, σIij corresponds to the extrinsic contribution
[6], while σIIxy the intrinsic contribution. The left-hand side
of Eq. (2) is σIIxy. The anomalous Hall conductivities σIij and
σIIxy of a disordered Weyl metal have been computed in the
model of topological insulator multilayers in Ref. [30]. It
was found that the extrinsic contribution to the anomalous
Hall effect is absent as long as the Fermi level is sufficiently
close to zero (Weyl nodes). This indicates that the charge-
induced spin torque TCS of a Weyl semimetal is robust
against disorder.
The mechanism of the induced effective field Eq. (15)

differs qualitatively from that proposed in a ferromagnet
deposited on a topological insulator [31]. On the surface of
a topological insulator, where Dirac-Weyl fermions dem-
onstrate the quantum anomalous Hall effect [15], a dis-
sipationless Hall current j produces a spin density
hσi ¼ −ð1=evFÞẑ × j due to spin-momentum locking
[15], which gives an effective field and a torque
[31–33], as in the case of spin-orbit torque TSOT
[34–38]. The effective field Beff generated by a current
is pointing in the in-plane direction, while the easy axis of
the local magnetization is perpendicular to the surface. To

switch the magnetization, therefore, the current needs to
exceed the threshold current, which might be challenging
because a large current destroys the quantum Hall regime at
the surface [31].
Conclusion.—In this Letter, we derived a generic

thermodynamic potential which describes coupling of
the local spin magnetization and the charge density of
itinerant band electrons in the three-dimensional anoma-
lous Hall ferromagnets. This indicates that a spin torque is
locally induced by gate control without a flowing current.
As an example, a Weyl semimetal was analyzed, and the
strength of the effect was estimated. The torque term Eq. (5)
overcomes the Zeeman effect when the shift of the
chemical potential is large enough, and, thus, the direction
of the magnetization can be controlled by gate tuning. The
spin torque Eq. (5) can be generated in ordinary ferro-
magnets with large anomalous Hall conductivity such as
transition materials, complex oxide ferromagnets, and
magnetic semiconductors. In practice, the region of
switched magnetizations should be smaller than the
Thomas-Fermi screening length as experimentally feasible
and required for nanoscale devices. The proposed mecha-
nism of the induced spin torque in this work potentially has
great advantage in application to low-energy-consumption
nonvolatile memory devices.
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