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Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for
the exotic fundamental physics they would exhibit, and for universal quantum computing applications. The
fractional quantum Hall (FQH) state at a filling factor of ν ¼ 12=5 is a promising candidate; however, its
precise nature is still under debate and no consensus has been achieved so far. Here, we investigate the
nature of the FQH ν ¼ 13=5 state and its particle-hole conjugate state at 12=5 with the Coulomb
interaction, and we address the issue of possible competing states. Based on a large-scale density-matrix
renormalization group calculation in spherical geometry, we present evidence that the essential physics of
the Coulomb ground state (GS) at ν ¼ 13=5 and 12=5 is captured by the k ¼ 3 parafermion Read-Rezayi
state (RR3), including a robust excitation gap and the topological fingerprint from the entanglement
spectrum and topological entanglement entropy. Furthermore, by considering the infinite-cylinder
geometry (topologically equivalent to torus geometry), we expose the non-Abelian GS sector correspond-
ing to a Fibonacci anyonic quasiparticle, which serves as a signature of the RR3 state at 13=5 and 12=5
filling numbers.
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Introduction.—While fundamental particles in nature are
either bosons or fermions, the emergent excitations in two-
dimensional strongly correlated systems may obey frac-
tional or anyonic statistics [1,2]. After two decades of study
[3–13], current interest in exotic excitations focuses on
states of matter with non-Abelian quasiparticle excitations
[14–16], and their potential applications to the rapidly
evolving field of quantum computation and cryptography
[17–22]. So far, the most promising platform for realization
of non-Abelian statistics is the fractional quantum Hall
(FQH) effect in the first excited Landau level, and two of
the most interesting examples are at the filling factors of
ν ¼ 5=2 and 12=5. The ν ¼ 5=2 state is widely considered
to be a candidate for the Moore-Read state hosting non-
Abelian Majorana quasiparticles [14–16]. Experiments
have revealed that the 12=5 state appears to behave
differently from the conventional FQH effect [5,8], and
it may also be a candidate state for hosting non-Abelian
excitations. However, the exact nature of the FQH 12=5
state is still undetermined due to the existence of other
possible competing candidate states.
Several ground-state (GS) wave functions have been

proposed [16,23–27] as models for the observed FQH
effect at ν ¼ 12=5 [5,8,13]. The most exciting candidate is
the k ¼ 3 parafermion state proposed by Read and Rezayi
(RR3) [16]. This RR3 state describes a condensate of
three-electron clusters that forms an incompressible state
at ν ¼ 13=5 [16]. One can also construct the particle-hole
partner of the RR3 state to describe the 12=5 FQH effect.
Besides the RR3 state, some competing candidates for
ν ¼ 13=5 or 12=5 exist: a hierarchy state [28,29], a Jain

composite-fermion (CF) state [30], a generalization of the
non-Abelian Pfaffian state by Bonderson and Slingerland
(BS) [24,25], and a bipartite CF state [26,27]. So far, the
true nature of the 12=5 and 13=5 FQH states remains
undetermined. The main challenges in settling this issue are
the limited computational ability and the lack of an efficient
diagnostic method. For example, from exact diagonaliza-
tion (ED) calculations in the limited feasible range of
system sizes, it is found that the overlaps between the
Coulomb GS at ν ¼ 12=5 and different model wave
functions are all relatively large [16,25], while the extrapo-
lated GS energies of the RR3 and BS states are very close in
the thermodynamic limit [25,31]. Taken as a whole,
previous studies have left the nature of the Coulomb GS
at ν ¼ 13=5 and 12=5 unsettled.
Recently, there has been growing interest in connecting

quantum entanglement [32–35] with emergent topological
order [36,37] in strongly interacting systems, which offers a
new route to identification of the precise topological order
of a many-body state. Although characterization of entan-
glement has been successfully used to identify various
well-known types of topological order [38–45], application
of the method to a system with competing phases still faces
challenges when ED studies suffer from strong finite-size
effects, and other methods such as quantum Monte Carlo
calculations suffer from sign problems. The recent develop-
ment of the high efficiency density-matrix renormalization
group (DMRG) in momentum space [42,46] allows the
study of such systems in sphere and cylinder geometries,
both of which can be used to make concrete predictions of
the physics of real systems in the thermodynamic limit.
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Here, we combine these advances and use these two
geometries to address the long-standing issues of the
FQH at ν ¼ 12=5 and 13=5.
In this Letter, we study the FQH at the ν ¼ 12=5 and

13=5 filling factors by using the state-of-the-art DMRG
numerical simulations. By studying large systems up to
Ne ¼ 36 on spherical geometry, we establish that the
Coulomb GS at ν ¼ 13=5 is an incompressible FQH
state, protected by a robust neutral-excitation gap
Δn ≈ 0.012ðe2=lBÞ. Crucially, we show that the entangle-
ment spectrum (ES) fits the corresponding SUð2Þ3 con-
formal field theory (CFT) which describes the edge
structure of the parafermion RR3 state. The topological
entanglement entropy (TEE) is also consistent with the
predicted value for the RR3 state, indicating the emergence
of Fibonacci anyonic quasiparticles. Moreover, we also
perform a finite-size scaling analysis of the GS energies for
ν ¼ 12=5 states at different shifts corresponding to the
particle-hole conjugate of the RR3 state, the Jain state and
the BS state. Finite-size scaling confirms that the ground
state with topological shift S ¼ −2ð3Þ (where RR3 and its
particle-hole partner states are expected to occur) is
energetically favored in the thermodynamic limit.
Finally, to explicitly demonstrate the topological degen-
eracy, we obtain two topologically distinct GS sectors on
the infinite cylinder using infinite-size DMRG. While one
sector is the identity sector matching to the GS from the
sphere, the new sector is identified as the non-Abelian
sector with a Fibonacci anyonic quasiparticle through its
characteristic ES and TEE. Thus, we establish that the
essence of the FQH state at ν ¼ 13=5 is fully captured by
the non-Abelian parafermion RR3 state (and by its particle-
hole conjugate at ν ¼ 12=5) and show that it is stable
against perturbations as we change the Haldane pseudo-
potentials and the layer width of the system.
Model and method.—We use the Haldane representation

[28,47,48] in which the Ne electrons are confined on the
surface of a sphere surrounding a magnetic monopole of
strength Q. In this case, the orbitals of the nth Landau level
are represented as orbitals with azimuthal angular momen-
tum −L;−Lþ 1;…; L, with L ¼ Qþ n being the total
angular momentum. The total magnetic flux through the
spherical surface is quantized to be an integer Ns ¼ 2L.
Assuming that electron spins are fully polarized and
neglecting Landau-level mixing, the Hamiltonian in the
spherical geometry can be written as

H ¼ 1

2

X

m1þm2¼m3þm4

hm1; m2jVjm3; m4iâ†m1
â†m2

âm3
âm4

;

where â†m (âm) is the creation (annihilation) operator at the
orbital m and V is the Coulomb interaction between
electrons in units of e2=lB, with lB being the magnetic
length. The two-body Coulomb interaction element can be
decomposed as

hi;jjVjp;qi¼
X2L

l¼0

Xl

m¼−l
hL;i;L;jjl;mihl;mjL;p;L;qiVnðlÞ;

where hL; i;L; jjl; mi are the Clebsch-Gordan coefficients
and VnðlÞ is the Haldane pseudopotential representing the
pair energy of two electrons with relative angular momen-
tum 2L − l in the nth LL [28,49]. For electrons at fractional
filling factor ν, Ns ¼ ν−1Ne − S, where S is the curvature-
induced “shift” on the sphere.
Our calculation is based on the unbiased DMRG method

[46,56–60], combined with ED. The (angular) momentum-
space DMRG allows us to use the total electron number Ne
and the total z component of angular momentum Ltot

z ¼PNe
i¼1mi as good quantum numbers to reduce the Hilbert

subspace dimension [46]. Here, we report the result at
ν ¼ 13=5ð12=5Þ with an electron number up to Ne ¼
36ð22Þ by keeping up to 30 000 states with optimized
DMRG, which allows us to obtain accurate results for
energy and the ES on much larger system sizes beyond the
ED limit [NED

e ¼ 24ð16Þ at ν ¼ 13=5ð12=5Þ].
Ground state energy, energy spectrum, and neutral

gap.—We first compute the GS energies for a number of
systems up to Ne ¼ 36 at ν ¼ 13=5, with a shift S ¼ 3
consistent with the RR3 state. As shown in the low-lying
energy spectrum in the inset of Fig. 1(b) obtained from ED
for Ne ¼ 21, the GS is located in the Ltot ¼ 0 sector and is
separated from the higher energy continuum by a finite gap,
which signals an incompressible FQH state. The extrapo-
lation of the GS energy to the thermodynamic limit can be
carried out using a quadratic function of 1=Ne (the blue
line), or a linear fit in 1=Ne (the red line) after renormaliz-
ing the energy by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Qν=Ne

p
to take into account the

curvature of the sphere [61], as shown in Fig. 1(a). We
obtain the E0=Ne ¼ −0.38458ð24Þ (the blue line) and
−0.38487ð9Þ (the red line), which demonstrates consis-
tency between the two extrapolating schemes.

FIG. 1 (color online). (a) The ground-state energy per electron
(the blue dots) corresponding to the ν ¼ 13=5 state. The blue line
shows the extrapolated values obtained using a quadratic function
of 1=Ne. The red dots shows the rescaling energy by a
renormalized magnetic length and the red line is the linear fitting.
(b) The neutral gapΔn for the 13=5 state as a function of the 1=Ne
(b is the layer-width parameter [49]). (Inset) Energy spectrum
versus total angular momentum Ltot for Ne ¼ 21. Δn is defined as
the energy difference between the lowest-energy state (in
Ltot ¼ 0) and the first excited state (in Ltot ≠ 0).
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We also calculated the neutral-excitation gap Δn at
ν ¼ 13=5 [62]. This is equivalent to the energy difference
between the GS and the “roton minimum” [63–65], as
illustrated in the inset of Fig. 1(b). The roton minimum
corresponds to the lowest excitation energy of a quasielec-
tron-quasihole pair [65]. Figure 1(b) showsΔn as a function
of 1=Ne, where the large-system results indicate that the
neutral gap approaches a nonzero value Δn ≈ 0.012�
0.001 for Ne ≥ 21. Since the Hamiltonian in this Letter
is particle-hole symmetric, the neutral gap at ν ¼ 12=5 and
13=5 is expected to be identical [66]. In addition, if the
effect of finite layer width is considered [49], the neutral-
excitation gap is reduced but still remains consistent with a
nonzero value [Fig. 1(b)].
Competing states.—In Fig. 2, we compare the GS

energies per electron of three known candidates for
ν ¼ 12=5: the particle-hole conjugate of the RR3 state
with a shift S ¼ −2, the non-Abelian BS state with S ¼ 2
[24], and a Jain state with S ¼ 4. We find that the lowest-
energy state for the Jain state shift (S ¼ 4) in larger system
sizes has a total angular momentum Ltot ≠ 0, indicating that
it represents excitations of some other incompressible state
other than the Coulomb GS at ν ¼ 12=5 [27]. Second, the
GSs with the RR3 and BS shifts continue to have Ltot ¼ 0
for the systems that we have studied, and the extrapolation
based on the result for 10 ≤ Ne ≤ 22 leads to E0=Ne ¼
−0.3425 for the RR3 state and E0=Ne ¼ −0.3410 for the
BS state, respectively. Compared to the previous studies
[25,31], the extrapolation errors are reduced by the inclu-
sion of larger system sizes obtained using DMRG. Our
calculations suggest that the GS state with shift
S ¼ −2ðS ¼ 3Þ is energetically favored at ν ¼ 12=
5ð13=5Þ. Our results are consistent with the interpretation
that the RR3 state describes the true GS (see the full
evidence below), while the other states at nearby shifts
correspond to states with quasiparticle or quasihole
excitations.
Orbital ES.—Li and Haldane first established that the

orbital ES of the GS of the FQH phase contains information
about the counting of their edge modes [34,37]. Thus, the
orbital ES provides a “fingerprint” of the topological order,

which can be used to identify the emergent topological
phase in a microscopic Hamiltonian [34,39–42].
As a model FQH state, the RR3 parafermion state can be

represented by its highest-density root configuration pat-
tern of 1110011100…11100111, corresponding to a gen-
eralized Pauli principle of no more than three electrons in
five consecutive orbitals [67–69]. Consequently, the orbital
ES depends on the number of electrons in the partitioned
subsystem [49]. In Fig. 3, we show the orbital ES of three
distinct partitions for system size Ne ¼ 36 for the Coulomb
GS. For 3n electrons in the subsystem [Fig. 3(a)], the
leading ES displays the multiplicity pattern 1,1,3,6,12 in
the first five angular momentum sectors ΔLA

z ¼ 0; 1; 2;
3; 4. For 3nþ 1 or 3nþ 2 electrons in the subsystem
[Figs. 3(b) and 3(c)], the ES shows the multiplicity pattern
of 1,2,5,9 in the ΔL ¼ 0; 1; 2; 3 momentum sectors. The
above characteristic multiplicity patterns of the low-lying
ES agree with the predicted edge excitation spectrum of the
RR3 state obtained either from its associated CFT, or the
“≤ 3 in 5” exclusion statistics rule [49].
In addition, we vary the Haldane pseudopotentials V1ð1Þ

and V1ð3Þ (keeping all others at their Coulomb-interaction
values), and we map out an ES-gap diagram which
illustrates the robustness of the FQH state as the interaction
parameters are changed [70–73]. In Fig. 3, we plot the
entanglement gap (for the lowest-Lz ES level) [34,46] as a
function of V1ð1Þ= V1

Coulð1Þ and V1ð3Þ=V1
Coulð3Þ, where

V1
CoulðlÞ are the Coulomb values of pseudopotentials. We

find that the entanglement gap is robust in a region centered

FIG. 2 (color online). Finite-size extrapolation of the GS
energies for different shifts corresponding to different candidate
states at ν ¼ 12=5. All energies have been rescaled by the
renormalized magnetic length. The angular momentum of the
GS is shown whenever it is nonzero (Ltot ≠ 0).

FIG. 3 (color online). (a)–(c) The low-lying orbital ES of
Ne ¼ 36 are shown for three different partitions. The lower
ES level counting in the sector ΔLA

z ¼ 0; 1; 2; 3; 4 are labeled by
color, where ΔLA

z ¼ LA
z − LA

z;min, with LA
z;min as the quantum

number where the primary field occurs. The entanglement gap of
orbital ES of Ne ¼ 24 is shown for partition (d) with 3n electrons
and (e) with 3nþ 1 electrons in the subsystem as a function of the
pseudopotentials V1ð1Þ=V1

Coulð1Þ and V1ð3Þ=V1
Coulð3Þ, where

V1
CoulðlÞ is the Coulomb value of the pseudopotentials. The black

point corresponds to the Coulomb point.
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at an approximately-fixed V1ð1Þ=V1ð3Þ ratio (indicated by
the white line). Away from that, for the regime
V1ð1Þ=V1

Coulð1Þ < 0.92 and V1ð3Þ=V1
Coulð3Þ > 0.98, we

find a rapid drop of the entanglement gap indicating a
quantum phase transition. We have also studied the effect of
the ES of modifying the Coulomb interaction with a
realistic layer width b [49], and we find that the RR3 state
persists until b=lB ∼ 2, which is qualitatively consistent
with the results of varying V1ð1Þ and V1ð3Þ.
Topological entanglement entropy.—For a two-

dimensional gapped topologically ordered state, the
dependence of the entanglement entropy SAðlAÞ of the
subsystem A on the finite boundary-cut length lA has
the form SAðlAÞ ¼ αlA − γ, where TEE γ is related to the
total quantum dimension D by γ ¼ lnD [32,33]. We have
extracted the TEE using our largest system, Ne ¼ 36 [49].
The TEE obtained was γ ¼ 1.491� 0.091, consistent
with the theoretically predicted value γ ¼ lnD ¼
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð1þ ϕ2Þ

p
≈ 1.447 for the RR3 state, where each

non-Abelian Fibonacci anyon quasiparticle contributes
an individual quantum dimension dF ¼ ϕ ¼ ð ffiffiffi

5
p þ 1Þ=2

(ϕ denotes the golden ratio). The appearance of dF ¼ ϕ is a
signal of the emergence of Fibonacci anyon quasiparticles,
and it arises because two Fibonacci quasiparticles may fuse
either into the identity or into a single Fibonacci quasipar-
ticle [45]. This exotic property makes Fibonacci quasipar-
ticles capable of universal quantum computation [17].
Topological degeneracy on the infinite cylinder.—

Topologically ordered states have characteristic GS degen-
eracies on compactified spaces. To access the different
topological sectors at ν ¼ 13=5, we implemented the
infinite-size DMRG in cylinder geometry with a finite
circumference Ly [42,49,74]. For each value of Ly, we
repeatedly calculated GSs using different random initial-
izations for the infinite DMRG optimization. We found that
each infinite DMRG simulation converged to one of the
two states: jΨ1i and jΨϕi. These states are distinguishable
by their orbital ES, as shown in Fig. 4: jΨ1i has the same
ES structure as in Figs. 3(a)–3(c), which matches the
identity sector with root configuration …0111001110….
On the other hand, jΨϕi shows the ES multiplicity pattern
1; 3; 6; 13;…, which identifies the spectrum as that of the
Fibonacci non-Abelian sector with root configuration
…1010110101… [49,75]. Furthermore, these two ground
states are indeed energetically degenerate, with an energy
difference per electron of less than 0.0002 with Ly ¼ 24lB,
while the entropy difference between these two states is
around ΔS ≈ lnϕ ≈ 0.48, consistent with the quantum
dimension of the Fibonacci quasiparticle. Combining this
with the fivefold center-of-mass degeneracy, we have
obtained all ten of the predicted degenerate RR3 GSs on
infinite cylinder (or torus).
Summary and discussion.—We have presented what we

believe to be compelling evidence that the essence of the
Coulomb-interaction ground states at ν ¼ 13=5 and 12=5 is

indeed captured by the parafermion k ¼ 3 Read-Rezayi
state RR3, in which quasiparticles obey non-Abelian
“Fibonacci anyon” statistics. The neutral-excitation gap
is found to be a finite value Δn ≈ 0.012e2=lB in the
thermodynamic limit. Results for the entanglement spec-
trum fingerprint and the value of the topological entangle-
ment entropy show that the edge structure and bulk
quasiparticle statistics are consistent with the prediction
bases on the RR3 state. Additionally, we find two topo-
logically degenerate ground-state sectors on the infinite
cylinder, respectively, corresponding to the identity and the
Fibonacci anyonic quasiparticle, which fully confirms the
RR3 state, without input of any features (such as shift)
taken from the model wave function, that might have biased
the calculation. The current work opens up a number of
directions deserving further exploration. For example,
while the FQH ν ¼ 12=5 state has been observed in
experiments, there is no evidence of a FQH phase at
ν ¼ 13=5 in the same systems [5,8]. So far, it is not clear
whether this absence is due to a broken particle-hole
symmetry from Landau-level mixing, or other asymmetry
effects such as differences in the quantum wells [7]. Our
numerical studies suggest that the outlook for the existence
of such a state at 13=5 is promising, and some positive
signs of this may have already been observed very recently
[76]. Numerical studies may also further suggest how
various other exotic FQH states in the second Landau
level at different filling factors may be stabilized.
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and jΨϕi by setting Ly ¼ 24lB. jΨ1ðϕÞi denotes the GS with
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Note added.—Recently, we became aware of overlapping
results in Ref. [77].
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