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Graphene is famous for being a host of 2D Dirac fermions. However, spin-orbit coupling introduces a
small gap, so that graphene is formally a quantum spin Hall insulator. Here we present symmetry-protected
2D Dirac semimetals, which feature Dirac cones at high-symmetry points that are not gapped by spin-orbit
interactions and exhibit behavior distinct from both graphene and 3D Dirac semimetals. Using a two-site
tight-binding model, we construct representatives of three possible distinct Dirac semimetal phases and
show that single symmetry-protected Dirac points are impossible in two dimensions. An essential role is
played by the presence of nonsymmorphic space group symmetries. We argue that these symmetries tune
the system to the boundary between a 2D topological and trivial insulator. By breaking the symmetries we
are able to access trivial and topological insulators as well as Weyl semimetal phases.
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Over the past decade, graphene has attracted intense
interest as a material with Dirac cones at the Fermi energy
and, as a consequence, a number of unique electronic
properties [1,2]. The Dirac points in graphene, as in similar
materials [3–6], are protected by symmetry, but only in the
absence of spin-orbit coupling. Spin-orbit coupling opens a
gap at the Dirac point, leading to a topological insulating
phase [7,8]. The discovery of topological insulators (TIs)
heightened interest in three-dimensional Dirac semimetals,
which host 3D Dirac points when spin-orbit coupling is
included [9,10]. The concept of Dirac and Weyl super-
conductors has also been recently introduced [11]. In this
Letter we introduce a system that has symmetry-protected
2D Dirac points in the presence of spin-orbit coupling and
provide a classification of such systems in general. These
are of interest because they are symmetry tuned to the
boundary between topological and trivial insulating phases.
Three-dimensional Dirac semimetals fall into two dis-

tinct classes. In Ref. [10] we introduced a Dirac semimetal
with Dirac points at high-symmetry points on the surface
of the Brillouin zone (BZ). Candidate materials include
β-cristobalite BiO2 [10], as well as distorted spinel materi-
als such as BiZnSiO4 [12]. In these materials the semi-
metallic state is at the boundary between strong and weak
topological insulating phases, and an essential role is
played by the nonsymmorphic symmetry of the crystal
space group. A distinct class of Dirac semimetals was
introduced in Refs. [13,14], and has been observed in
Cd3As2 and Na3Bi [15–17]. Here, the Dirac points arise
due to a band inversion and occur at a generic point on a C3

symmetry axis in the interior of the BZ. Opening a gap by
lowering the symmetry in these materials necessarily leads

to a topological insulator—the trivial insulator is not
adjacent. The 2D Dirac semimetals we introduce here
are analogous to the former class: they arise due to a
nonsymmorphic symmetry that requires the conduction and
valence bands to touch and exist in the presence of
significant spin-orbit coupling. We will argue that the
nonsymmorphic character correlates with the fact that they
are at the boundary between a trivial and topological
insulator. We will begin by clarifying the role of non-
symmorphic symmetries in protecting Dirac points. Wewill
then introduce a simple model system that allows us to
characterize the allowed Dirac phases in 2D, and conclude
with a brief discussion of the possible material venues for
these phases, including the layered iridium oxide super-
lattices recently proposed and studied in Ref. [18].
It has long been known that nonsymmorphic symmetries

lead to extra degeneracies in electronic band structures that
cause bands to “stick together” due to the existence of
higher-dimensional projective representations of the little
groups of certain values of k [19]. This fact can be
understood as a simple consequence of fractional trans-
lation symmetries. Nonsymmorphic space groups are dis-
tinguished by the existence of symmetry operations that
combine point group operations g with translations t that
are a fraction of a Bravais lattice vector. In 2D, the relevant
operations, denoted fgjtg, are screw axes g ¼ C2n̂⊥
(n̂⊥⊥ẑ), glide mirror lines g ¼ Mn̂⊥ , and glide mirror
planes g ¼ Mẑ, in conjunction with a half-translation t
that satisfies gt ¼ t as well as eiG·t ¼ −1 for the “odd”
reciprocal lattice vectors G. The consequence of the frac-
tional translation symmetry is simplest in the case where
the unit cell of simple symmorphic crystal is doubled. In
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that case, the folded back bands necessarily touch on lines
in momentum space. If the symmetry is reduced so that
fEjtg is violated, the degeneracy is, in general, split.
However, a nonsymmorphic symmetry fgjtg still protects
degeneracies in the invariant line or plane in the BZ that
satisfies gk ¼ k. In this invariant space the Bloch states can
be chosen to be eigenstates fgjtgju�k i ¼ �λeik·tju�k i. For
k → kþG, with eiG·t ¼ −1, the two eigenstates must
switch places [20]. In the absence of other degeneracies,
pairs of band branches must intersect an odd number of
times as they cross the BZ, as shown in Fig. 1(a).
Time-reversal symmetry Θ imposes further constraints.

The situation is simplest in the absence of spin-orbit
interactions, where effectively Θ2 ¼ þ1, and g2 ¼ 1, so
λ ¼ �1. In this case the degeneracy must occur at the time-
reversal invariant momentum k ¼ G=2, at the BZ boun-
dary [Fig. 1(b)]. At that point the eigenstates of fgjtg with
eigenvalue �i are interchanged by Θ. Stated another
way, at k ¼ G=2, the Bloch Hamiltonian commutes with
~Θ ¼ fgjtgΘ, which satisfies ~Θ2 ¼ −1, guaranteeing a
Kramers degeneracy.
Spin-orbit interactions lead to additional splitting of the

bands, though time-reversal symmetry (with Θ2 ¼ −1)
enforces Kramers degeneracies at the time-reversal invari-
ant momenta. Moreover, a mirror or twofold rotation

satisfies g2 ¼ −1, so that fgjtg has eigenvalues �i at
k ¼ 0, and eigenvalues �1 at k ¼ G=2. It follows that
Kramers partners at k ¼ 0 have opposite eigenvalues under
fgjtg, while Kramers partners at k ¼ �G=2 have the same
eigenvalue under fgjtg. In the absence of other symmetries,
this leads to the pattern of splitting shown in Fig. 1(c). This
results in the sticking of four bands, so that a system with
the nonsymmorphic symmetry and time reversal that has a
band filling of 4nþ 2 (for integer n) is necessarily a
topological semimetal. Note that for a glide mirror plane
g ¼ Mẑ this leads to a line of degeneracies, while for a glide
mirror line g ¼ Mn̂⊥ , it leads to (Weyl) point degeneracies.
If in addition the crystal has inversion symmetry P, then

since ðPΘÞ2 ¼ −1, the bands are Kramers degenerate for
all k. This leads to a fourfold degenerate crossing at
k ¼ G=2 [Fig. 1(d)]. At k ¼ G=2, P and fgjtg both have
eigenvalues �1 and commute with Θ. In addition, they
anticommute with each other, which guarantees a fourfold
degeneracy. Since the fourfold degeneracy will be split
away from G=2, this constitutes a 2D Dirac point.
We now introduce a simple tight-binding model for a 2D

Dirac semimetal. This can be viewed as a 2D analog of
the diamond lattice model for a 3D Dirac semimetal [21].
We begin with a square lattice of s states with first and
second neighbor hopping and create a

ffiffiffi
2

p
×

ffiffiffi
2

p
unit cell

[Fig. 2(a)]. This features line nodes along the BZ boundary.
To make the lattice nonsymmorphic we displace the AðBÞ
sublattices in the þẑð−ẑÞ direction. This crinkling of the
lattice [Fig. 2(b)] permits a second neighbor spin-orbit
interaction [8], leading to the Hamiltonian

H ¼ 2tτx cos
kx
2
cos

ky
2
þ t2ðcos kx þ cos kyÞ

þ tSOτz½σy sin kx − σx sin ky�; ð1Þ
where τ and σ are Pauli matrices describing the lattice and
spin degrees of freedom. As shown in Fig. 2(b), nonzero
tSO breaks the degeneracy on the zone boundary every-
where except the cornersM and edge midpoints X1 and X2,
at which appear Dirac points.
The present lattice has high symmetry (layer group

P4=nmm) with multiple symmetries protecting the Dirac
points. From the analysis in Fig. 1(d), the combination of P,
Θ, and the glide mirror plane symmetry fMẑj 12 12g (t is in
units of the Bravais lattice constant) protects the Dirac
points at X1 and X2, while the screw axes fC2x̂j 12 0g and
fC2ŷj0 1

2
g protect the Dirac points at X1;M and X2;M,

respectively. This can be further seen by examining the
k · p theory near these points. Near k ¼ M,

HðM þ qÞ ¼ tSOðτzσyqx − τzσxqyÞ: ð2Þ

AtM, the symmetries Θ ¼ iσyK and P ¼ τx allow a single
mass term τx. This is forbidden by fC2x̂j 12 0g ¼ τyσx and
fC2ŷj0 1

2
g ¼ τyσy, but is allowed by fMẑj 12 12g ¼ iτxσz.

Likewise, near k ¼ X1,

FIG. 1 (color online). A nonsymmorphic symmetry fgjtg leads
to band crossings on a g invariant line or plane in momentum
space. (a) Without other symmetries, pairs of bands intersect an
odd number of times as they cross the BZ. (b) With time-reversal
symmetry, with Θ2 ¼ þ1, the crossing occurs at the zone
boundary G=2, where eiG·t ¼ −1. For Θ2 ¼ −1, Kramers pairs
at k ¼ 0 and G=2 connect as in (c), leading to a line node in an
invariant plane or a Weyl node on an invariant line. The labels
indicate the eigenvalues �λeik·t of fgjtg. (d) With inversion and
time-reversal symmetry, all states are degenerate (they are offset
for clarity), and the crossing occurs at G=2.
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HðX1 þ qÞ ¼ ðtτx − tSOτzσyÞqx þ tSOτzσxqy: ð3Þ
At X1, Θ ¼ iτzσyK and P ¼ τy allows the mass terms τy.
This is forbidden by fC2x̂j 12 0g ¼ τxσx and fMẑj 12 12g ¼
τxσz, but is allowed by fC2ŷj0 1

2
g ¼ iτyσy. A similar

analysis applies to X2.
In addition to spatial symmetries, Eq. (1) exhibits a

particle-hole symmetry when t2 ¼ 0, manifested by
fH; τyg ¼ 0. This guarantees the Dirac points at X1, X2,
and M occur at the same energy. t2 violates this symmetry
and leads to a shift in the energy at M relative to X1;2.
However, the mirror lines Mx̂�ŷ guarantee the equivalence
of X1;2. Thus, while the touching of the conduction and
valence band at X1, X2, and M is guaranteed, there will in
general be electron and hole pockets with a finite Fermi
surface [Figs. 2(b) and 2(d)]. Nonetheless, with appropriate
band structure engineering it may be possible to tune the
edge and corner Dirac points to approximately the same
energy. In the following we will explore the range of
behaviors that can arise when the symmetries in Eq. (1) are
systematically lowered. We show that Eq. (1) lies at the
boundary of three distinct Dirac semimetal phases, two
with a pair of Dirac points and the third with three, and
prove that in 2D there cannot exist a single symmetry-
protected Dirac point.

Case I: Two symmetry equivalent Dirac points.—First,
we consider a distortion that breaks the symmetry between
interactions in the h11i and h1̄1i directions [Fig. 2(c)] but
preserves the mirror line Mx̂þŷ. This allows a distortion of
the first neighbor hopping term,

V1 ¼ Δ1 sin
kx
2
sin

ky
2
τx: ð4Þ

The Hamiltonian H þ V1 retains inversion P, along with
fMẑj 12 12g and fMx̂þŷj00g, but the C2 screw symmetries are
violated. As shown in Fig. 2(c), the corner Dirac point is
gapped, but the Dirac points at X1;2 remain. Provided there
are no other extraneous electron and hole pockets and the
electron count is 4nþ 2, a system with these symmetries
will be a 2D Dirac semimetal, with two symmetry equiv-
alent Dirac points at EF. In fact, this is the only truly
protected Dirac semimetal in the absence of approximate
particle-hole symmetry, t2 ∼ 0. IfMx̂þŷ is violated, then the
X1;2 Dirac points are inequivalent, which belongs in the
next case.
Case II: Two symmetry inequivalent Dirac points.—We

next consider breaking the glide mirror plane fMẑj 12 12g
while keeping fC2x̂j 12 0g. We displace the B site in the ŷ
direction [Fig. 2(d)], allowing a term

V2 ¼ Δ2 cos
kx
2
sin

ky
2
τy: ð5Þ

The Hamiltonian H þ V2 now has a gap at X2, but Dirac
points remain protected at X1 andM, though in the presence
of t2 they are at different energies. It follows from the
arguments illustrated in Fig. 2 that a glide plane with
fractional translation ð1

2
0Þ will produce this result as well.

Case III: Three Dirac points.—All three Dirac points
remain protected in the presence of fMẑj 12 12g, fC2x̂j 12 0g, andfC2ŷj0 1

2
g. We find that the three Dirac points can persist

even when the screw symmetries are violated provided the
system retains an additional C4ẑ symmetry about the center
of a plaquette. This is violated by the crinkling responsible
for tSO. However, for the flat system tSO ¼ 0 this symmetry
will pertain if the A and B sites have a lower symmetry
internal structure allowing a spin-orbit term,

V3 ¼ t0SOτzð− sin kxσx þ sin kyσyÞ; ð6Þ

that preserves the three Dirac points. Note, however, that it is
impossible to gap the X1 and X2 points without also gapping
M. As discussed below, a single symmetry-protected Dirac
point is not possible.
These three cases represent all possible 2D systems with

Dirac points: (1) symmetric Dirac points at both edges
protected by P and a Mẑ glide plane, (2) Dirac points at an
edge and corner protected by P and glide planes or screw
axes along the x̂ or ŷ directions, and (3) Dirac points at both

FIG. 2 (color online). Energy bands for structures with Dirac
points protected by inversion symmetry, with lattice structure and
BZ shown above. Dirac points and nodal lines in the BZ are
marked in cyan. (a) The

ffiffiffi
2

p
×

ffiffiffi
2

p
supercell of a square lattice

with nodal lines along the BZ edge protected by fEjtg.
(b) Crinkling the lattice breaks fEjtg, leaving nonsymmorphic
symmetries and Dirac points at X1, X2, and M. (c) Distorting in
the h11i directions eliminates screw axes fC2xj 12 0g and fC2yj0 1

2
g

(as well as C4), gapping the corner Dirac point. (d) Alternatively,
displacing one of the sites along h10i breaks fMẑj 12 12g, leaving
Dirac points at the corner and one edge.
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edges and the corner protected by P and a C4ẑ rotation, or
case II for both the x̂ and ŷ directions.
Case IV: Line nodes and Weyl points.—Finally, we

mention that if inversion symmetry is violated, while
keeping the nonsymmorphic symmetries, then the Dirac
points are removed, but there remain Weyl points or line
nodes. For example, if in case I each site has a dipole
moment pðx̂þ ŷÞ, then a spin-orbit term vSOτxσz sinðkx −
kyÞ=2 is allowed. This preserves fMẑj 12 12g and for small vSO
leads to a circular line node surrounding the erstwhile Dirac
points at X1;2 [Fig. 3(a)]. More generally for this symmetry,
a line node will separate regions containing Γ and M from
regions containing X1;2. Similarly, if fC2x̂j 12 0g is preserved
but not fMẑj 12 12g, then the two Dirac points each split into
two Weyl points along the C2x̂ invariant lines ky ¼ 0 and
ky ¼ π [Fig. 3(b)]. Weyl points at generic k are also locally
protected when Θ and a C2ẑ symmetry are preserved even
in the absence of nonsymmorphic symmetries. However, in
this case the Weyl points can annihilate, and are not
guaranteed by symmetry.
A distinctive feature of the nonsymmorphic Dirac

semimetals is that they describe a critical point separating
topologically distinct phases. By lowering the symmetry it
is possible to open a gap that leads to either a trivial or
topological 2D insulator. Consider the system of case I
[Fig. 2(c)] with a gap introduced by displacing the center
atom [Fig. 4(a)], described by a perturbation

V4 ¼
�
m1 sin

�
kx þ ky

2

�
þm2 sin

�
kx − ky

2

��
τy;

where m1 and m2 describe the displacement in the ½11� and
½1̄1� directions, respectively. When jm1j > jm2j, the system
is a topological insulator, and for jm1j < jm2j the system is
in a trivial phase [Fig. 4(b)]. The boundaries between
topological and trivial insulating phases are marked by a
nonsymmetry-protected Dirac point. Changing the sign of
m1 or m2 results in a phase with the same topological

character. However, one may gap the Dirac semimetal
directly into either a topological or trivial insulator, depend-
ing on the direction of the displacement.
It is worthwhile to contrast the 2D Dirac semimetal

presented here with the symmetry-protected Dirac points
that arise at the surface of a weak topological insulator [21]
or a topological crystalline insulator [22]. There, the
surface Dirac points are protected by the combination of
time-reversal and a translation or mirror symmetry.
Breaking the symmetry leads to topologically distinct
gapped surface phases that map to each other under the
symmetry. Importantly, this leads to an absence of locali-
zation when the surface is strongly disordered, but retains
the symmetry on the average [23–26]. This phenomenon
can occur only at the surface of a 3D topological phase. In a
purely 2D system the trivial and TI phases are not related
by symmetry, so our 2D Dirac semimetal can be localized
by strong disorder. However, since it is in the symplectic
class, weak disorder leads to antilocalization. The absence
of symmetry relating the trivial and TI phases rules out a
single symmetry-protected Dirac point, since in that case
the symmetry would change the sign of the single mass
term. We find that changing the sign of the mass of one of
our Dirac points by a symmetry-breaking perturbation
always leads to the change in sign of another Dirac point,
resulting in the same topological order. Weak electron-
electron interactions do not significantly alter the electronic
structure of a 2D Dirac semimetal, though strong inter-
actions could lead to a gapped state. However, if the
symmetry is not lowered, that state must exhibit a nontrivial
topological order [20].
In terms of realistic materials, there are both challenges

and advantages to working in 2D. Two-dimensional sys-
tems can be more fragile, and typically require substrates
that can influence the behavior. On the other hand, they
offer additional tunability not available in 3D systems. For
example, the proximity of TI and I phases could allow for
flexible patterning of helical edge channels. There has been
a surge of interest in monolayers of covalently bound
layered materials over the past few years [27]: these

FIG. 3 (color online). Without inversion, nonsymmorphic
symmetries protect nodal lines or Weyl points. This may be
achieved by altering each site to be bipartite and asymmetric (e.g.,
heterodimers). (a) Breaking inversion in case I, while preserving
fMẑj 12 12g, leads to nodal lines that circle the former Dirac points
at X1;2. (b) Breaking inversion in case II, preserving fC2x̂j 12 0g,
results in Weyl points on the C2x̂ invariant lines.

(a) (b)

FIG. 4 (color online). By further lowering the symmetry, the
Dirac semimetal in Fig. 2(c) can be driven into either trivial (I) or
topological (TI) insulator phases. Lattice displacements in (a) give
rise to the phase diagram in (b).
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materials exhibit abundant variety in composition and
structure [28], and have already shown hints of being able
to host graphenelike Dirac points [29] and topological
phases [30,31]. Many of these materials exist in structures
belonging to appropriate symmetry groups, including
litharge (case III) and WTe2 [32] (case II), and some are
known to possess the appropriate band filling, such as
ðNb;TaÞTe2 [33]. Moreover, the Dirac points in iridium
oxide superlattices proposed by Chen and Kee [18] con-
stitute a manifestation of case I described above. They
showed that distortions can lead to a TI gapped phase. It
will also be interesting to demonstrate the distortions in that
system that lead to the trivial insulator. We are thus
optimistic about the prospects for the experimental study
of 2D Dirac semimetals.
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