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We present a nucleon-nucleon potential at fifth order in chiral effective field theory. We find a substantial
improvement in the description of nucleon-nucleon phase shifts as compared to the fourth-order results
utilizing a coordinate-space regularization. This provides clear evidence of the corresponding two-pion
exchange contributions with all low-energy constants being determined from pion-nucleon scattering. The
fifth-order corrections to nucleon-nucleon observables appear to be of a natural size, which confirms the
good convergence of the chiral expansion for nuclear forces. Furthermore, the obtained results provide
strong support for the novel way of quantifying the theoretical uncertainty due to the truncation of the chiral
expansion proposed by the authors. Our work opens up new perspectives for precision ab initio calculations
in few- and many-nucleon systems and is especially relevant for ongoing efforts towards a quantitative
understanding of the structure of the three-nucleon force in the framework of chiral effective field theory.
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Chiral effective field theory (EFT) provides a solid
foundation for analyzing low-energy hadronic observables
in harmony with the symmetries of QCD, the underlying
theory of the strong interactions. It allows one to derive
nuclear forces and currents in a systematically improvable
way order by order in the chiral expansion, based on a
perturbative expansion in powers of Q ∈ ðp=Λb;Mπ=ΛbÞ,
where p refers to the magnitude of three momenta of the
external particles, Mπ is the pion mass, and Λb is the
breakdown scale of chiral EFT [1]. Being combined with
modern few- and many-body methods, the resulting frame-
work based on solving the nuclear A-body Schrödinger
equation with interactions between nucleons tied to QCD
via its symmetries represents nowadays a commonly
accepted approach to ab initio studies of nuclear structure
and reactions; see Refs. [2,3] for review articles.
Chiral power counting suggests that nuclear forces are

dominated by pairwise interactions between the nucleons
[1], a feature that has been conjectured for a long time but
could only be explained with the advent of chiral EFT.
Many-body forces are suppressed by powers of the expan-
sion parameter Q. Specifically, the chiral expansion of
nucleon-nucleon (NN), three-nucleon (3NF), and four-
nucleon (4NF) forces starts at the orders Q0 (LO), Q3

(N2LO), and Q4 (N3LO), respectively, while next-to-
leading (NLO) corrections involve two-body operators
only. While accurate NN potentials at N3LO have been
available for about a decade [4,5], the 3NF still represents
one of the major challenges in the physics of nuclei and
nuclear matter [6]. In particular, numerically exact calcu-
lations in the three-nucleon (3N) continuum, the most

natural place to test the 3NF, have revealed that the spin
structure of the 3NF is not properly reproduced by the
available models [7]. Specifically, one observes clear
discrepancies between theory and experimental data for
various spin observables in nucleon-deuteron (Nd) scatter-
ing starting at EN ∼ 50 MeV, which tend to increase with
energy. In addition, there are a few discrepancies at low
energies such as, e.g., the so-called Ay puzzle; see Ref. [7]
for more details.
In the framework of chiral EFT, the impact of the leading

3NF at N2LO on three- and four-nucleon scattering, nuclear
structure, and reactions, as well as nuclear matter, has been
extensively studied using different many-body techniques.
In particular, the N2LO 3NF was found to reduce the
discrepancy for Ay in proton-3He elastic scattering [8] and
to play a crucial role in understanding neutron-rich systems
[9] and the properties of neutron and nuclear matter; see [6]
and references therein. Lattice simulations of light nuclei
within the framework of chiral EFT also confirm the
important role of the N2LO 3NF [10–12]. On the other
hand, the Ay puzzle in elastic Nd scattering is not resolved
at N2LO [8], and the existing discrepancies for spin
observables in the 3N continuum at medium and higher
energies are beyond the expected theoretical accuracy at
this order. It is, therefore, necessary to study corrections
beyond the leading 3NF. The N3LO contributions to the
3NF have been worked out recently and appear to be
parameter free [13,14]. It was found, however, that the
chiral expansion of the long- and intermediate-range parts
of the 3NF is not converged at this order due to large fifth-
order (N4LO) corrections associated with intermediate
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Δð1232Þ excitations [15–17]. A resolution of the long-
standing discrepancies in the 3N continuum will, therefore,
likely require the knowledge of the nuclear Hamiltonian at
N4LO [18].
In this Letter, we make an important step along this line

and present the NN potential at fifth order in the chiral
expansion based on the improved regularization framework
introduced in Ref. [19]. In addition to constructing a new
state-of-the-art chiral NN potential that leads to an excellent
description of the data and is expected to provide a solid
basis for future few- and many-body calculations, our study
represents a highly nontrivial test of the convergence of the
chiral expansion and of the new approach for estimating the
theoretical uncertainty, a necessary ingredient of any EFT
calculation [20].
We first discuss the isospin-conserving part of the

potential. As described in detail in Ref. [19], the NN
potential at N3LO involves contributions from up to three-
pion exchange and contact interactions acting in S, P, and
D waves and the mixing angles ϵ1 and ϵ2. When expressed
in terms of physical values of the pion masses and pion-
nucleon (πN) coupling constant, the expression for the one-
pion exchange potential (OPEP) remains unchanged at
N4LO. On the other hand, the static two-pion exchange
potential (TPEP) receives corrections at fifth order that are
visualized in Fig. 1. The corresponding diagrams up to the
two-loop level have been calculated recently using the
Cutkosky rules [21]. We have independently calculated
these contributions and have verified the expressions
presented in that work. Next, one also needs to account
for the Goldberger-Treiman discrepancy and the leading
relativistic corrections to the order Q3 TPEP. Notice that
the latter were already taken into account in Ref. [19].
Furthermore, in addition to the TPEP, one encounters
subleading three-pion exchange diagrams at N4LO.
Similar to Refs. [4,5,19], we do not include the
three-pion exchange potential explicitly, assuming that
its effects can be well reproduced by contact interactions.
We have verified the validity of this assumption for the
intermediate value of the regulator [22]. A remarkable
feature of the N4LO NN potential is the absence of new
isospin-conserving contact interactions. This can be traced

back to parity conservation and to the fact that the N4LO
corresponds to an odd power of the expansion parameter,
namely, Q5. This feature allows one to unambiguously
probe the impact of the fifth-order TPEP in NN scattering.
Our treatment of isospin-breaking (IB) corrections is

limited to the one employed in the Nijmegen partial wave
analysis (NPWA) [23], which is used as input in our
calculations; see Ref. [19] for more details. The only
new IB contribution we include compared to the N3LO
analysis of Ref. [19] is the momentum-dependent contact
interaction in the 1S0 channel, which results in C

pp
1S0 ≠ Cnp

1S0
using the notation of that work.
It remains to specify the values of the various parameters

entering the potential. The πN scattering amplitude at order
Q4 depends on certain combinations of low-energy con-
stants (LECs) ci, d̄i, and ēi, see Refs. [15,24] for notations,
which can be determined from πN scattering. Notice that at
N3LO, the TPEP depends on only the LECs ci and d̄i. In
our work [19], we employed the empirical values of the
LECs ci and d̄i as found inQ3 analyses of πN scattering. In
this Letter, we adopt the values from the order Q4 fit of
Ref. [15] based on the Karlsruhe-Helsinki partial wave
analysis (PWA) of πN scattering [25].
Here and in what follows, we adopt the same values for

the pion and nucleon masses, pion decay constant, nucleon
axial coupling constant, and pion-nucleon coupling gπN as
used in Ref. [19]. We also employ the same regularization
framework. In particular, the OPEP and TPEP are regu-
larized in r space by multiplying with the function
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FIG. 1 (color online). Fifth-order contributions to the TPEP.
Solid lines and dashed lines refer to nucleons and pions,
respectively. Solid dots denote vertices from the lowest-order
πN effective Lagrangian. Filled (red) rectangles, (blue) ovals, and
gray circles denote the order Q4, order Q3, and order Q2

contributions to πN scattering, respectively.

TABLE I. χ2=datum for the description of the Nijmegen np and pp phase shifts [23] at different orders in the chiral expansion for the
cutoff R ¼ 0.9 fm. Only those channels are included that have been used in the N3LO=N4LO fits, namely, the S, P, andDwaves and the
mixing angles ϵ1 and ϵ2.

Elab bin LO NLO N2LO N3LO N4LO

Neutron-proton phase shifts
0–100 360 31 4.5 0.7 0.3
0–200 480 63 21 0.7 0.3

Proton-proton phase shifts
0–100 5750 102 15 0.8 0.3
0–200 9150 560 130 0.7 0.6
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with the cutoff R being chosen in the range of
R ¼ 0.8–1.2 fm. For contact interactions, we use a nonlocal
Gaussian regulator in momentum space with the cutoff
Λ ¼ 2R−1; see Ref. [19] for more details. We also adopt the
same treatment of electromagnetic effects and relativistic
corrections and employ the same fitting strategy to deter-
mine the values of the LECs accompanying contact inter-
actions as done in Ref. [19]. In particular, we use np and pp
phase shifts and mixing angles of the NPWA as input in our
fits and define their errors by deviations to the results based
on theNijmegen I, II, andReid93NNpotentials of Ref. [26],
which can be regarded as alternative PWA.While χ2=datum
for the description of the Nijmegen phase shifts calculated
using the errorsΔX defined above does, clearly, not allow for
statistical interpretation, see Ref. [19] for more details, it
provides a useful tool to quantify the accuracy of the fits.
For all considered values of the cutoff, namely, R ¼ 0.8,

0.9, 1.0, 1.1, and 1.2 fm, the resulting LECs are found to be
natural and comparable in sizewith their N3LO values given
in Ref. [19]. We found that the inclusion of the fifth-order
TPEP leads to a substantial improvement in the description
of np and pp phase shifts (for hard cutoff choices). As an
example, we show in Table I the resulting χ2=datum for the
description of the Nijmegen np and pp phase shifts using the
cutoff R ¼ 0.9 fm, which was found in Ref. [19] to yield
most accurate results for NN observables. Notice that the
additional IB N4LO contact term affects only np results.
Switching it off leads to χ2=datum ¼ 0.5 for the description
of the np phase shifts in both energy bins. Further, the
residual cutoff dependence of the phase shifts appears, as
expected, to be very similar at N4LO and N3LO. Also, the
error plots at N4LO reveal a similar behavior to those at
N3LO shown in Fig. 5 of that work, so that the estimation of
the breakdown scale of Λb ¼ 600 MeV for R ¼
0.8;…; 1.0 fm made in the N3LO analysis of Ref. [19]
remains valid at N4LO.
For the deuteron properties, the N4LO predictions are

very close to those at N3LO (except for PD, which is not
observable), see Table II, indicating a good convergence of
the chiral expansion. This feature holds true for all choices
of the cutoff R.

We now address the question of the theoretical uncertainty
of our calculations due to the truncation of the chiral
expansion. To this aim, we employ the approach proposed
inRef. [19],which is based on estimating the size of neglected
higher-order contributions and does not rely on a cutoff
variation. Specifically, the uncertaintyΔXN4LOðpÞ of aN4LO
predictionXN4LOðpÞ for an observableXðpÞ, withp referring
to the center-of-mass momentum, is estimated via

ΔXN4LOðpÞ ¼ max½Q6 × jXLOðpÞj;
Q4 × jXLOðpÞ − XNLOðpÞj;
Q3 × jXNLOðpÞ − XN2LOðpÞj;
Q2 × jXN2LOðpÞ − XN3LOðpÞj;
Q × jXN3LOðpÞ − XN4LOðpÞj�: ð2Þ

TABLE II. Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1=2), asymptotic D=S state ratio η,
radius rd (in fm), and quadrupole moment Q (in fm2) at various orders in the chiral expansion based on the cutoff R ¼ 0.9 fm in
comparison with empirical information. Also shown is the D-state probability PD (in %). Notice that rd and Q are calculated without
taking into account meson-exchange current contributions and relativistic corrections. The star indicates an input quantity. References to
experimental data can be found in Ref. [19].

LO NLO N2LO N3LO N4LO Empirical

Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224 575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.975 35(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29

FIG. 2 (color online). Predictions for the np total cross section
based on the improved chiral NN potentials at NLO (orangle
filled squares), N2LO (green solid diamonds), N3LO (blue filled
triangles), and N4LO (red filled circles) for the different choices
of the cutoff: R1 ¼ 0.8 fm, R2 ¼ 0.9 fm, R3 ¼ 1.0 fm,
R4 ¼ 1.1 fm, and R5 ¼ 1.2 fm. The horizontal band refers to
the result of the NPWAwith the uncertainty estimated as explained
in the text. Also shown are experimental data of Ref. [27].
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Here, Q ¼ maxðp=Λb;Mπ=ΛbÞ is the expansion parameter.
For the breakdown scale, we use the same values as in
Ref. [19], namely, Λb ¼ 600, 500, and 400 MeV for
R ¼ 0.8;…; 1.0 fm, R ¼ 1.1 fm, and R ¼ 1.2 fm, respec-
tively. The theoretical uncertainty at lower orders is estimated
in a similar way as described in detail in Ref. [19]. Figure 2
shows the resulting predictions for the np total cross section at
different energies and for all cutoff choices. First, we observe
that the predictions based on different values of the cutoff R
are consistent with each other with results corresponding to
larger values ofR being less accurate due to a larger amount of
cutoff artifacts. Second, ourN4LOpredictions provide strong
support for thenewapproachof error estimation. Inparticular,

the actual size of theN4LOcorrections is in a good agreement
with the estimated uncertainty at N3LO [19]. The somewhat
larger N4LO contributions at the lowest energy are to be
expected and can be traced back to the adopted fitting strategy
in the 1S0 channel; see Ref. [19] for more details. Finally, our
N4LO results are in a very good agreement both with the
NPWA and with the experimental data.
The above error analysis can be carried out for any

observable of interest. Figure 3 shows the estimated
uncertainty of the S-, P-, and D-wave phase shifts and
the mixing angles ϵ1 and ϵ2 at NLO and higher orders in the
chiral expansion based on R ¼ 0.9 fm. The various bands
result by adding or subtracting the estimated theoretical
uncertainty, �ΔδðElabÞ and �ΔϵðElabÞ, to or from the
calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
Elab ¼ 200 MeV. In all cases, we observe excellent agree-
ment with the PWA and the available experimental data,
which are shown for illustrative purposes only, and confirm
a good convergence of the chiral expansion. Furthermore,
the N4LO uncertainty bands lie within the N3LO ones. This
provides a strong support for reliability of the proposed
approach of error estimation. Similar conclusions follow

FIG. 3 (color online). Results for the np S, P, andD waves, and
the mixing angles ϵ1, ϵ2 up to N4LO based on the cutoff of
R ¼ 0.9 fm in comparison with the NPWA [23] (solid dots) and
the single-energy PWA of [28] (open triangles). The bands of
increasing width show estimated theoretical uncertainty at N4LO
(red), N3LO (blue), N2LO (green), and NLO (yellow).

FIG. 4 (color online). Predictions for selected np scattering
observables at Elab ¼ 200 MeV calculated up to N4LO based on
the cutoff of R ¼ 0.9 fm. Open circles refer to the result of the
NPWA [23]. For remaining notations, see Fig. 3. For references to
data, see [19]. θCM denotes the scattering angle in the center of
mass system.
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from the results based on different values of the cutoff R,
which are, however, less stringent due to lower accuracy of
such calculations.
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