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Simulating a binary black hole coalescence by solving Einstein’s equations is computationally
expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques,
we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical
relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and
durations corresponding to about 15 orbits before merger. We assess the model’s uncertainty and show that
our modeling strategy predicts NR waveforms not used for the surrogate’s training with errors nearly as
small as the numerical error of the NR code. Our model includes all spherical-harmonic −2Ylm waveform
modes resolved by the NR code up to l ¼ 8. We compare our surrogate model to effective one body
waveforms from 50M⊙ to 300M⊙ for advanced LIGO detectors and find that the surrogate is always more
faithful (by at least an order of magnitude in most cases).
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Since the breakthroughs of 2005 [1–3], tremendous
progress in numerical relativity (NR) has led to hundreds
of simulations of binary black hole (BBH) coalescences
[4–10]. This progress has been driven partly by the data
analysis needs of advanced ground-based gravitational
wave detectors like LIGO [11] and Virgo [12]. Recent
upgrades to these detectors are expected to yield the first
direct detections of gravitational waves (GWs) from com-
pact binary coalescences [13].
Despite the remarkable progress of the NR community, a

single high-quality simulation typically requires days to
months of supercomputing time. This high computational
cost makes it difficult to directly use NR waveforms for
data analysis, except for injection studies [4,9], since
detecting GWs and inferring their source parameters
may require thousands to millions of accurate gravitational
waveforms. Nevertheless, a first template bank for non-
spinning binaries in Advanced LIGO has been recently
constructed from NR waveforms [14]. Furthermore, NR
waveforms have been used successfully in calibrating
inspiral-merger-ringdown effective-one-body (EOB)
[15–21] and phenomenological [22–25] models. These
models have free parameters that can be set by matching
to NR waveforms and are suitable for certain GW data
analysis studies [26]. However, these models can have
systematic errors since they assume a priori physical
waveform structure and are calibrated and tested against
a small set of NR simulations.
In this Letter, we present an ab initio methodology

based on surrogate [27,28] and reduced order modeling
techniques [29–33] that is capable of accurately predicting

the gravitational waveform outputs from NR without any
phenomenological assumptions or approximations to gen-
eral relativity. From a small set of specially selected
nonspinning BBH simulations performed with the
Spectral Einstein code (SpEC) [34–36], we build a surrogate
model that can be used in place of performing SpEC
simulations. The techniques are general, however, and
directly apply to other NR codes or even analytical wave-
form models. The surrogate model constructed here gen-
erates nonspinning BBH waveforms with mass ratios
q ∈ ½1; 10�, contains 25–31 gravitational wave cycles
before peak amplitude, and includes many spherical-
harmonic modes (see Table II and its caption). These
choices are made based on available NR waveforms and
are not limitations of the method. Our surrogate model has
errors close to the estimated numerical error of the input
waveforms. An example comparing the surrogate output
to a NR waveform can be seen in Fig. 1. This simulation
took 9.3 days using 48 cores but only ∼0.01 sec for the
surrogate evaluation of the (2,2) mode.
Previous work [27,37] built surrogates for EOB wave-

forms; building and assessing surrogate models of NR
waveforms have unique challenges associated with input
waveforms that are expensive to compute. We summarize
next the construction of our model, focusing on steps not
addressed in [27] but that are required for NR surrogates.
Parametric sampling.—Typically, a surrogate model is

trained on a dense set of waveforms known as the training
set. In the case of NR, we cannot afford to generate a large
number of waveforms. Instead, we generate a dense set of
nonspinning waveforms using an EOB model [18], as
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implemented in [38], which contains the ðl; mÞ ¼ fð2; 2Þ;
ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þg spin-weight −2 spherical-
harmonic modes and captures robust features of NR
waveforms. The EOB training set waveforms are computed
for times in ½−2750; 100�M (M is the total mass), which is
the interval over which we build our surrogates.
Next, on this training set we apply a greedy algorithm to

expose the most relevant mass ratio values [39,40]. The
algorithm proceeds from a linear basis constructed from i
waveforms already chosen. The L2 norms of the differences
between the training set waveforms and their projection
onto this basis are computed. The waveform with the
largest such error is added to the basis as its iþ 1 element.
SpEC simulations of nonspinning BBH mergers are then
performed for these mass ratios. The resulting NR wave-
forms are used to build our surrogates without any further
input from the EOB model.
We seeded the greedy algorithm with five publicly

available SpEC simulations of nonspinning BBH mergers
[10,19] (see Table I), and the next 17 (ordered) mass ratio
values are the algorithm’s output based on the EOB model.
The final ∼10 mass ratios are included to improve the
surrogate if necessary, since we can assess the surrogate
model’s accuracy only after it is built. Our method for
building surrogates is hierarchical [27,40]; additional NR
waveforms can be included to improve the model.
Generating the NR waveforms.—Table I summarizes the

22 SpEC simulations used in this Letter. See, e.g., Ref. [35]
for the numerical techniques used in SpEC. The numerical
resolution is denoted by “Levi,” where i is an integer that
controls the local truncation error in the metric and its
derivatives allowed by adaptive mesh refinement (AMR) in
SpEC; larger numbers correspond to smaller errors (the error
threshold scales like e−i) and more computationally

expensive simulations. The scaling of global quantities
(e.g., waveform errors) with i is difficult to estimate a priori.
Between two and five levels of resolution are simulated for
each mass ratio. To achieve quasicircular orbits, initial data
are subject to an iterative eccentricity reduction procedure
resulting in eccentricities ≲7 × 10−4 [41–43].

SpEC numerically solves an initial boundary value
problem defined on a finite computational domain. To
obtain waveforms at future null infinity Iþ, we use the
Cauchy characteristic extraction method [44–48]. Using the
PittNull code [44–46], we compute the Newman-Penrose
scalar Ψ4 at Iþ and finally obtain the gravitational wave
strain h through two temporal integrations. We minimize
the low-frequency, noise-induced “drifts” [47] by using
frequency cutoffs. [We integrate Ψ4 twice in the frequency
domain by dividing −Ψl;m

4 ðfÞ by ½2πmaxðf; 2f0=3Þ�2,
where f0 is the initial GW mode frequency].
Figure 2 shows the convergence typically observed in

our simulations when using AMR. Because AMR makes
independent decisions for different Levi, a particular
subdomain may sometimes have the same number of grid
points for two different values of Levi at a given time, and
the subdomain boundaries do not necessarily coincide for
different Levi. Thus, plots like Fig. 2 sometimes show
anomalously small differences between particular pairs of
numerical resolutions (for instance Lev2 vs Lev3 near
t ¼ −3500M in the top panel of Fig. 2). See Sec. IIIB of
[35]. Nevertheless, the waveform differences generally
decrease quickly with increasing resolution. Let

δhl;mðqÞ≡ ∥hl;m1 ð·; qÞ − hl;m2 ð·; qÞ∥2P
l;m∥h

l;m
2 ð·; qÞ∥2 ð1Þ

be the disagreement between two waveform modes, hl;m1

and hl;m2 , where ∥hl;mð·; qÞ∥2 ¼ R
dtjhl;mðt; qÞj2. We

TABLE I. Properties of the highest resolution SpEC simulations
used for building BBH waveform surrogates. The quantity e−5 is
the orbital eccentricity divided by 105 [41]. The number of orbits
(Orbs) is also given. The SpEC simulations are available in the
public waveform catalog [10] under the name “SXS∶BBH∶ID,”
where ID is an identification number.

ID q e−5 Orbs ID q e−5 Orbs

180 1.00 5.1 28.2 191 2.51 65 22.5
181 6.00 5.8 26.5 192 6.58 4.0 21.1
182 4.00 12 15.6 193 3.50 3.0 19.6
183 3.00 4.8 15.6 194 1.52 74 19.6
184 2.00 15 15.6 195 7.76 22 21.9
185 9.99 31 24.9 196 9.66 23 23.1
186 8.27 16 23.7 197 5.52 25 20.3
187 5.04 3.0 19.2 198 1.20 17 20.7
188 7.19 15 22.3 199 8.73 8.5 22.6
189 9.17 13 25.2 200 3.27 36 20.2
190 4.50 2.5 20.1 201 2.32 15 20.0

FIG. 1 (color online). Top: The þ polarization (2,2) mode
prediction for q ¼ 2, the surrogate model’s worst prediction over
q from a “leave-one-out” surrogate that was not trained with this
waveform (see below). Our full surrogate, trained on the entire
data set, is more accurate. Bottom: Phase δφ2;2 and waveform
differences between the surrogate and highest resolution (Lev4)
SpEC waveforms. Also shown is the SpEC numerical truncation
error found by comparing the two highest resolution (Lev4 and
Lev3) waveforms.
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estimate the numerical truncation error of each mode when
h1 and h2 are waveforms computed at the two highest
resolutions. The full waveform error for a given mass ratio
is δhðqÞ ¼ P

l;mδh
l;mðqÞ. [Throughout, we excludem ¼ 0

modes because (nonoscillatory) Christodoulou memory is
not accumulated sufficiently in current NR simulations
[49]]. We report numerical truncation errors after an overall
simulation-dependent time shift and rotation (which we
shall refer to as surrogate alignment, described in the next
section), which are physically unimportant coordinate
changes. The resulting estimated numerical truncation
errors of the dominant (2,2) modes, using our surrogate
alignment scheme, are shown in Fig. 3 (black circles).
Additional error sources are nonzero eccentricity in

the (intended to be circular) NR initial data, and an
imperfect procedure for integrating Ψl;m

4 to obtain

hl;m ≡ Al;m expð−iφl;mÞ. These both cause small oscilla-
tions in the waveform amplitudes Al;mðtÞ and phases
φl;mðtÞ [47,50] that we model following [50]. We also
compute the error in the strain integration scheme by
comparing Ψl;m

4 to two time derivatives of hl;m, as well
as estimates for numerical errors in the Cauchy character-
istic extraction method [48]. For the (2,2) mode, these
additional errors are negligibly small compared to SpEC
truncation errors (cf. Fig. 3).
Preparing NR waveforms for surrogate modeling.— We

apply a simulation-dependent time shift and physical
rotation about the z axis so that all the modes’ phases
are aligned. This reveals the underlying parametric smooth-
ness in q that will be useful for building a surrogate. Our
time shifts set each waveform’s total amplitude,

Aðt; qÞ2 ≡
Z
S2
dΩjhðt; θ;ϕ; qÞj2 ¼

X
l;m

jhl;mðt; qÞj2; ð2Þ

to be maximum at t ¼ 0. After enforcing this alignment
scheme we interpolate the waveform mode amplitudes
and phases onto an array of uniformly spaced times in
½−2750; 100�M, with Δt ¼ 0.1M. Finally, we align the
initial gravitational wave mode phases by performing a
simulation-dependent, constant (in time) physical rotation
about the z axis so that φ2;2ðtiÞ ¼ φ2;−2ðtiÞ, which fixes a
physical rotation up to multiples of π. We resolve the
ambiguity by requiring φ2;1ðtiÞ ∈ ð−π; 0�. Waveform trun-
cation errors, after performing this surrogate alignment
scheme, are shown in Fig. 2. In what follows, we call
“truncation error after surrogate alignment” simply “trun-
cation error”.
Building the surrogate.—Each m > 0 mode, hl;mðt; qÞ,

is modeled separately while (due to reflection symmetry
about the orbital plane) m < 0 modes are evaluated using
hl;−mðt; qÞ ¼ ð−1Þlhl;mðt; qÞ�. We model allm ≠ 0modes
but keep only those yielding smaller surrogate errors δhl;m

compared to setting the mode to zero. Table II lists our
modeled modes and their errors.
Our complete surrogate waveform model is defined by

hSðt; θ;ϕ; qÞ ¼
P

l;mh
l;m
S ðt; qÞ−2Ylmðθ;ϕÞ where

hl;mS ðt; qÞ ¼ Al;m
S ðt; qÞe−iφl;m

S ðt;qÞ;

Xl;m
S ðt; qÞ ¼

XNX

i¼1

Bl;m
X;i ðtÞXl;m

i ðqÞ; X ¼ fA;φg: ð3Þ

Unlike Ref. [27], we construct a reduced basis representa-
tion for the waveform amplitudes and phases separately,
instead of the waveforms themselves [37]. Here, the
fBlm

X;igNX
i¼1 are computed off-line from the SpEC waveforms

[27]. At a set of NX specially selected times fTlm
X;igNX

i¼1,
which are the empirical interpolant nodes [27,51], the
functions Xlm

i ðqÞ ≈ XlmðTlm
X;i ; qÞ approximate the para-

metric variation of the amplitudes and phases (via fitting).

FIG. 2 (color online). The relative error, jh22i − h22iþ1j=jh22iþ1j,
successive resolutions of SpEC Levi for the (2,2) mode of
simulation 198 in Table I. Top: Waveform output as directly
given by SpEC (“Unaligned”). Bottom: “Aligned,” which involves
a multimode peak alignment scheme described by Eq. (2)
followed by a rotation of the binary around the z axis to align
the waveform phases at ti ¼ −2750M. Our surrogate is built from
NR waveform data after alignment, and so this measurement of
truncation error is the most relevant for surrogate model building.

FIG. 3 (color online). Numerical truncation errors (black)
dominate all other sources of error for the (2,2) mode, except
for simulation 180 (q ¼ 1), where the truncation errors are
already very small. For some weaker modes, systematic ampli-
tude oscillations primarily due to eccentricity may become more
relevant.
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A thorough discussion of surrogate model building steps is
presented in [27]. When evaluating the surrogate at a
particular mass ratio, the fits are evaluated first to determine
the amplitudes and phases at their respective interpolating
times fTlm

X;igNX
i¼1. The remaining operations yield the surro-

gate model prediction, hSðt; θ;ϕ;qÞ.
To find each Xlm

i ðqÞ we perform least-squares fits to the
22 data points, fXlmðTlm

X;i ; qjÞg22j¼1. All fits except odd m
mode amplitudes use fifth degree polynomials in the
symmetric mass ratio, ν ¼ q=ð1þ qÞ2. For odd m modes,
the amplitude approaches 0 and its derivative with respect
to ν diverges as q → 1 (or ν → 1=4). Consequently, we use
Alm
i ðνÞ¼P

5
n¼1=2;1a

lm
n ð1−4νÞn to account for this behav-

ior. The waveform phases of odd m modes at q ¼ 1, which
are undefined, are excluded when fitting for each φlm

i ðqÞ.
Assessing surrogate errors.—We next assess the surro-

gate’s predictive quality. To quantify the error in the
surrogate model itself, as opposed to its usage in a data
analysis study, we do not minimize the errors over relative
time and phase shifts here.
A first test is a consistency check to reproduce the 22

input SpEC waveforms used to build the surrogate. These
errors are shown in Fig. 4 (red squares) and are comparable
to or smaller than the largest SpEC truncation errors (black
circles).
A more stringent test is the leave-one-out cross-

validation (LOOCV) study [52]. For each simulated mass
ratio qi, we build a temporary trial surrogate using the
other 21 waveforms, evaluate the trial surrogate at qi, and
compare the prediction with the SpEC waveform for qi.
Hence, the trial surrogate’s error at qi should serve as an
upper bound for the full surrogate trained on all 22
waveforms. Repeating this process for all possible 20
LOOCV tests results in Fig. 4 (blue triangles). (We omit
the smallest and largest mass ratios here as the correspond-
ing trial surrogates would extrapolate to their values.)

Despite the ith trial surrogate having no information about
the waveform at qi, the errors remain comparable to the
largest SpEC truncation errors. The LOOCV errors are
typically twice as large as the full surrogate ones, con-
firming the former as bounds for the latter. Relative errors
for selected modes are shown in Table II. While weaker
modes have larger relative errors, their power contribution
is small enough that the error in the full surrogate wave-
form, δh, is nearly identical to the SpEC resolution error.
A third test is to compare the surrogate waveforms to

those of a second surrogate, built from the second highest
resolution SpEC waveforms. The resulting comparison is
shown in Fig. 4 (cyan line). These errors are comparable to
SpEC waveform truncation errors (black circles). We find
that the surrogate building process is robust to resolution
differences. Furthermore, the surrogate can be improved
using NR waveforms of higher accuracy.
We perform a final test and construct surrogates using the

first N selected mass ratios (from Table I) as input wave-
forms, leaving 22 − N mass ratios with which to test. We
find the total surrogate error decreases exponentially with
N and is comparable to the SpEC truncation error after using
15 waveforms. Some modes [e.g., (2,2)] are fully resolved
after as few as seven waveforms.
Comparison to EOB.—For data analysis purposes, we

compare our surrogate with EOBNRv2 [19] and SEOBNRv2
[21] models (generated from a current implementation in
LAL [38]). In Fig. 5, we show the unfaithfulness

1 −max
δφ;δt

Re
Z

∞

15 Hz
df

~̂h1ðf; θ;φÞ ~̂h
�
2ðf; θ;φþ δφÞe2πifδt
SnðfÞ

ð4Þ
of the surrogate and the two EOB models against the NR

waveforms. Here, ~̂h is the normalized Fourier transform of
h (such that a waveform’s unfaithfulness with itself gives
0), and SnðfÞ the Advanced LIGO zero-detuned high

TABLE II. Relative mode errors, reported as 103 × ∥hl;mS ðqÞ−
hl;mðqÞ∥2=∥hl;mðqÞ∥2, from the leave-one-out surrogates. Only
those modes which contribute greater than 0.02% to the full
waveform’s time-domain power are used in the computation of
the max and mean, except for “All” which is just δh. Our
surrogate also includes the (3,1), ð4; ½2; 3�Þ, ð5; ½3; 4; 5�Þ,
ð6; ½4; 5; 6�Þ, ð7; ½5; 6; 7�Þ, and ð8; ½7; 8�Þ modes. Weaker modes
typically have relative errors between 1% and 35%.

Surrogate NR

ðl; mÞ Max Mean Max Mean

(2,2) 0.36 0.07 0.36 0.08
(2,1) 29 3.4 4.1 0.54
(3,3) 53 4.1 11 0.94
(3,2) 100 17 1.7 0.43
(4,4) 7.4 2.2 20 2.1
All 0.42 0.12 0.40 0.10

FIG. 4 (color online). Waveform differences between the two
highest SpEC resolutions (black circles), surrogates built from the
two highest SpEC resolutions (cyan line), the full surrogate and
SpEC (red squares), and leave-one-out trial surrogates and SpEC
(blue triangles). The largest surrogate error is for q ¼ 2, for which
the (2,2) mode is shown in Fig. 1.
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power sensitivity noise curve [54]. The surrogate is more
faithful than both EOB models for all cases considered.
Since SEOBNRv2 only provides ð2;�2Þ modes, it performs
worst for large total masses where additional modes
become important. All models predict the (2,2) mode with
an unfaithfulness <1% for q ∈ ½1; 10� at 115M⊙; however,
the EOB models are limited by the availability of sub-
dominant modes.
Discussion.—We have built a surrogate model for NR

nonspinning BBH merger waveforms generated by SpEC.
On a standard 2015 single core computer, all 77 modes with
2 ≤ l ≤ 8 are evaluated in ≈0.5 sec (≈ 0.01 sec for a
single mode) providing a factor of ∼106−8 speedup com-
pared to SpEC. Importantly, this is achieved with only a
small loss in accuracy. Like other data-driven modeling
strategies, our surrogate is valid only within the training
intervals, namely, q ∈ ½1; 10� and t=M ∈ ½−2570; 100�.
Therefore, within the training intervals, our surrogate
model generates BBH merger waveforms that are equiv-
alent to SpEC outputs up to numerical error and a small
modeling error.
NR surrogates can be used for multiple-query applica-

tions in gravitational wave data analysis such as detector-
specific template-bank (re-)generation and parameter
estimation. Our surrogate and, more generally, the results
of this Letter open up the exciting possibility of performing,
for example, parameter estimation with multimodal NR
waveforms (with hybridization, if needed). Parameter
estimation studies seeking to incorporate model error
may benefit from the surrogate’s relatively straightforward
characterization and assessment of uncertainty from a

combination of the surrogate’s and SpEC’s systematic
and numerical errors. We anticipate NR surrogate modeling
to complement traditional strategies [15–24,26] by
providing unlimited high-fidelity approximations of NR
waveforms with which to calibrate, refine, and make
comparisons. Building NR surrogates of precessing BBH
merger waveforms, which may be modeled from the
parameters specially selected in [55], offers a promising
avenue for modeling the full seven dimensional BBH
parameter space. The surrogate model described in this
Letter is available for download at [56,57].
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