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The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic
sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of
cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that
can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the
source proximity for energies E < Ecut, where Ecut ≈ 107L2=3

44 GeV for low background magnetic fields
(B0 ≪ nG). For larger values of B0, cosmic rays are confined close to their sources for energies
E < Ecut ≈ 2 × 108λ10L

1=4
44 B1=2

−10 GeV, where B−10 is the field in units of 0.1 nG, λ10 is its coherence lengths
in units of 10 Mpc, and L44 is the source luminosity in units of 1044 erg=s.
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Introduction.—The sources of ultrahigh-energy cosmic
rays (UHECRs) are yet to be found. Actually at present
there is no clear consensus even on the transition energy
at which cosmic rays (CRs) start being mainly of extra-
Galactic origin [1]. Some lower limits on the average
luminosity of UHECR sources have been presented in the
literature [2], hinting at the need for very high luminosities.
In the following we will not be concerned about the

nature of the source. We will only assume that UHECRs are
accelerated in some unspecified extra-Galactic sources and
focus on their propagation while leaving the parent galaxy.
We will refer to the latter as the “source” for the sake of
brevity, but the actual accelerator can be anything within
the parent galaxy.
Let us assume, for simplicity, that the CR sources

accelerate a spectrum qðEÞ ∝ E−2 up to some maximum
energy, Emax. The differential number density of CRs
streaming out of such sources will read

nCRðE; rÞ ¼
qðEÞ
4πr2c

¼ LCR

Λ
E−2

4πr2c
≈ 1.7 × 10−14L44E−2

GeVr
−2
Mpc cm

−3 GeV−1; ð1Þ

where we have taken Λ ¼ lnðEmax=EminÞ ≈ 25 and
LCR ¼ 1044L44 erg=s; energies are in GeV and distances
in Mpc. We assume that the source is in a region of the
intergalactic medium, where the density of baryonic gas is
nb ¼ Ωbρcr=mp ≈ 2.5 × 10−7 cm−3 (where ρcr is the criti-
cal mass density of the Universe and Ωb ¼ ρb=ρcr ≃ 0.022
is the ratio of the baryon density ρb with respect to the
critical density) and we assume that there is a cosmological
magnetic field with a strength B0 ¼ 10−13B−13 G and a
correlation scale, λB ∼ 10 Mpc × λ10 (where λ10 is in units
of 10 Mpc). Hence, on scales smaller than λ10, the field
can be considered as oriented along a given ẑ direction.

In such a situation, the Alfvén speed is vA ¼ B0=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πΩbρcr

p
≈ 44B−13 cm s−1.

The positively charged CRs leaving their sources form
an electric current that will be compensated by motions
in the background plasma (return current) so as to ensure
local charge and current neutrality. This situation is known
to give rise to a nonresonant plasma instability that is
potentially very important for CR transport. This instability
was first proposed in Refs. [3,4] in connection with CR
acceleration in supernova remnants, in which context it
may provide a mechanism for strong magnetic field
amplification in the shock proximity, a necessary condition
to accelerate particles to ∼PeV maximum energies.
The main purpose of this Letter is to evaluate under

which conditions this phenomenon gives rise to an insta-
bility and what the consequences are in terms of CR
propagation and intergalactic magnetic field generation.
The calculations.—The current associated with CRs

streaming away from their sources in the intergalactic
medium is easily written as a function of the minimum
energy E of particles in the current as

JCR ¼ enCRð> EÞc ¼ eLCRE−1

4πΛr2
¼ e

qð> EÞ
4πr2

; ð2Þ

where, in the last equality, we made use of Eq. (1).
This expression is strictly valid only if the background

field is zero, or if the Larmor radius of the particles is
rL ≫ λB, but we shall see that the above estimate for the
current density turns out to hold also in the diffusive
regime.
A current propagating in a plasma can give rise to

instabilities of different types. Granted that the current
carrying particles are well magnetized [vA > JCR=ðenbÞ,
which from Eq. (2) is seen to imply B0 > 2 × 10−13L44

E−1
GeVr

−2
Mpc] G, the fastest growing instability arises when the

condition
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JCRE >
ceB2

0

4π
ð3Þ

is satisfied. This condition, which is the standard one for
the development of nonresonant modes of the streaming
instability [3], is equivalent to the requirement that the
energy density of CRs be locally larger than the energy
density in the form of a preexisting magnetic field, B2

0=4π.
For qðEÞ ∝ E−2, this requirement becomes independent of
E and, using Eq. (2), can be simply formulated as

r < rinst ¼ 3.7 × 104
L1=2
44

B−13
Mpc: ð4Þ

When Eq. (4) is satisfied, the fastest growing modes in the
amplified field δB have a wave number kmax that reflects the
equilibrium between magnetic tension and the JCRδB force
on the plasma, namely, kmaxB0 ¼ 4π

c JCR, and their growth
rate is

γmax ¼ kmaxvA ¼
ffiffiffiffiffiffiffiffiffiffiffi
4π

nbmp

s
JCR
c

; ð5Þ

independent of the initial value of the local magnetic field,
B0. The scale of the fastest growing modes k−1max is much
smaller than the Larmor radius of the particles dominating
the current [this is entailed in the condition for growth,
Eq. (3)]; therefore, they have no direct influence on particle
scattering. This conclusion is, however, changed by the
nonlinear evolution of the modes. As long as the instability
develops on small scales, it cannot affect the current; hence,
one could treat the two as evolving separately. A fluid
element will be subject to a force that is basically
∼JCRδB=c: its equation of motion is ρðdv=dtÞ≃
ð1=cÞJCRδB, with δBðtÞ ¼ δB0 exp ðγmaxtÞ. As an estimate,
one can write the velocity of the fluid element as
v ∼ ½δBðtÞJCR�=ðcργmaxÞ, which upon integration leads to
an estimate of the mean fluid displacement as Δx∼
½δBðtÞJCR�=ðcργ2maxÞ. We can then estimate the saturation
of the instability by requiring that the displacement equals
the Larmor radius of particles in the current as calculated
in the amplified magnetic field, E=eδB: when this con-
dition is fulfilled, scattering becomes efficient and the
current is destroyed. This simple criterion returns the
condition

δB2

4π
≈
JCRE
ce

¼ nCRð> EÞE: ð6Þ

Since nCRð> EÞ ∝ E−1 in the case considered here, the
saturation values of the magnetic field are independent of
the energy of particles in the current driving the instability.
A somewhat lower value of the saturation was inferred in
[5], as due to the nonlinear increase of the wavelength of
the fastest growing modes. Following such a prescription,
our saturation magnetic field would be ∼10 times smaller.

Equation (6) expresses the condition of equipartition
between the CR energy density and the amplified magnetic
pressure, a condition that is often assumed in the literature
without justification, and that here arises as a result of the
physics of magnetic amplification itself.
The field strength, as a function of the distance r, will

read

δBðrÞ ¼ 3.7 × 10−9L1=2
44 r−1Mpc G: ð7Þ

This rather strong magnetic field will develop over
distances r from the source that satisfies Eq. (4) and under
the additional condition that the growth is fast enough so as
to reach saturation in a fraction of the age of the Universe,
t0 (numerical simulations of the instability [3] show that
saturation occurs when γmaxτ ∼ 5 − 10). This latter con-
dition reads γmaxt0 ≳ 5 and translates into

r < rgrowth ¼ 1.2 × 104L1=2
44 E−1=2

GeV Mpc: ð8Þ

If the conditions expressed by Eqs. (4) and (8) are fulfilled,
then the magnetic field can be estimated as in Eq. (7) and
since δB ≫ B0 and there is roughly equal power at all
scales [it is equivalent to say that δB in Eq. (6) is
independent of energy E], it is reasonable to assume that
particle propagation can be described as diffusive, with a
diffusion coefficient corresponding to Bohm diffusion in
the magnetic field, δB. This assumption is based on two
different considerations: the Bohm diffusion regime is
generally found in the quasilinear theory of wave particle
interactions when δB=B0 ≈ 1 and δB2 is roughly indepen-
dent on scale (the dependence is only logarithmic: see, e.g.,
[6]); in the particular case of turbulence generated by Bell’s
instability, with δB=B0 ≫ 1 and the scale invariant power
spectrum, there is additional evidence that transport is
governed by Bohm diffusion (see [7] and [4] for an
extensive discussion). We can then write the particle
diffusion coefficient as

DðE; rÞ ¼ 9 × 1024EGeVrMpcL
−1=2
44 cm2 s−1: ð9Þ

The initial assumption of ballistic propagation of CRs
escaping a source leads us to conclude that particles
would produce enough turbulence to make their motion
diffusive. The diffusion time over a distance r from the
source can be estimated as τdðE; rÞ ¼ r2=DðE; rÞ ≈ 3.3 ×
1016rMpcE−1

GeVL
1=2
44 yr from which follows that particles can

be confined within a distance r from the source for a time
exceeding the age of the Universe, if their energy satisfies
the condition

E≲ Econf ¼ 2.6 × 106rMpcL
1=2
44 GeV: ð10Þ

One might argue that this conclusion contradicts the
assumptions of our problem: for instance, the density of
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particles in the diffusive regime is no longer as given in
Eq. (1). This is certainly true, but the current that is
responsible for the excitation of the magnetic fluctuations
remains the same, as can easily be demonstrated: for
particles with energy E > Econf in Eq. (10), and assuming
that energy losses are negligible, quasistationary diffusion
can be described by the equation

1

r2
∂
∂r

�
r2DðE; rÞ ∂n∂r

�
¼ qðEÞ

4πr2
δðrÞ; ð11Þ

where qðEÞ is the injection rate of particles with energy E at
r ¼ 0. Here the advection term has been neglected since
there is no bulk motion of the background plasma and the
Alfvén is very small. This equation is easily solved to
provide the density of CRs at distance r from the source:

nðE; rÞ ≈ q
8πrDðE; rÞ : ð12Þ

Clearly, by definition of a diffusive regime, the density of
particles returned by Eq. (12) is larger than the density in
the ballistic regime, Eq. (1). However, the current in the
diffusive regime is

JdiffCR ¼ eEDðE; rÞ ∂n∂r ¼ e
qð> EÞ
4πr2

; ð13Þ

which is exactly the same current that we used in the case of
ballistic CR propagation [see Eq. (2)]. This is a very
important and general result: the magnetic field in Eq. (7) is
reached outside a CR source independent of the mode of
propagation of CRs, since it is only determined by the
current and not by the absolute value of the CR density.
Clearly the particles that are confined within a distance r
around the source do not contribute to the CR current at
larger distances.
Results and implications.—The confinement energy in

Eq. (10) is somewhat ambiguous since it depends on the
distance r. What is the highest energy at which CRs
escaping a source of given luminosity are confined to
the source vicinity? In order to answer this question we
need to take into account all three conditions that need to be
imposed to guarantee confinement, namely, Eq. (4) (exist-
ence of fast growing modes), Eq. (8) (growth rate faster
than the expansion of the Universe), and Eq. (10) (confine-
ment). The first condition yields a limit on the distance
from the source that is easy to satisfy, unless the strength of
the background magnetic field is increased by several
orders of magnitude, in which case however other com-
plications arise (see discussion below).
The other two conditions lead to the constrain

Ecut ≈ 107 GeV × L2=3
44 : ð14Þ

These particles are confined within a distance from the
source

rconf ≈ 3.8 Mpc × L1=6
44 : ð15Þ

Within such a distance the magnetic field is as given
by Eq. (7) and larger than δBðrconfÞ ≈ 9.6 × 10−10L1=3

44 G. It
is noteworthy that both the size of the confinement
region and the magnetic field depend weakly upon the
CR luminosity of the source, respectively, as L1=6

44 and L1=3
44 .

Hence, we can conclude that magnetic fields at the level of
0.1 − 1 nG must be present in regions of a few Mpc around
the sources of UHECRs. As a consequence, the spectrum of
CRs leaving these sources and eventually reaching the
Earth must have a low-energy cutoff at an energy, Ecut. This
kind of cutoff has been often postulated in the literature in
order to avoid some phenomenological complications that
affect models for the origin of UHECRs. For instance, a
low-energy cutoff is required in the dip model [8,9] to
describe appropriately the transition from Galactic to extra-
Galactic CRs. This feature is usually justified by invoking
some sort of magnetic horizon in the case that propagation
of UHECRs is diffusive in the lower energy part of the
spectrum [10]. A similar low-energy suppression of the CR
flux is required by models with a mixed composition [11].
In the calculations illustrated above, the presence of nuclei
is readily accounted for, provided the current is still
produced by protons (assumed to be the most abundant
specie). In this case, the value of Ecut is simply shifted to Z
times higher energy for a nucleus of charge Z.
As discussed above, the condition that guarantees the

existence of nonresonant modes [Eq. (4)] is easily satisfied,
unless the background magnetic field reaches B0 ≈ 9.6×
10−10L1=3

44 . However, when this happens the calculations
above break down for another reason: CRs can freely
stream from the source only if their Larmor radius in the
preexisting magnetic field is much larger than the assumed
coherence scale of the field, namely,

E ≫ 106 GeV × B−13λ10: ð16Þ
When Eq. (16) is not fulfilled, namely, when the back-
ground field is relatively strong, then the propagation of
CRs from the source becomes intrinsically one dimen-
sional, which implies that the density of particles can be
written as

nCRðE; rÞ ¼
QðEÞt
πr2Lvt

¼ 2QðEÞ
πRcðEÞ2c

; ð17Þ

where we used the fact that the mean velocity of the
particles is v ¼ c=2 for a distribution of particles that is
isotropic on a half-plane and we assumed that particles
spread in the direction perpendicular to the background
field by a distance equal to RcðEÞ ¼ max (rLðEÞ; Rs) with
Rs the source size and rLðEÞ the Larmor radius of particles
of given energy, E. For a given source size rL > Rs as soon
as EGeV ≳ 9 × 106B−10ðRs=100 kpcÞ. At energies larger
than this

PRL 115, 121101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

18 SEPTEMBER 2015

121101-3



nCRðE; rÞ ≈ 47L44E−4
GeVB

2
−10 cm−3 GeV−1: ð18Þ

If particles with energy > E are able to reach a given
location, the current at that location is

JCR ≈ e
c
2
EnCRðE; rÞ ¼ e

EQðEÞ
πr2L

; ð19Þ

which results in nonresonant growth of the field for

E < Einst ¼ 3.5 × 109 GeVL1=2
44 ; ð20Þ

independent of B0, and in a saturation magnetic field

δB ≈ 0.7E−1
GeVL

1=2
44 B−10 G: ð21Þ

This value of the magnetic field is apparently very large
and reflects the very large density of particles at low
energies in the proximity of the source, as due to the
reduced dimensionality of the problem. However, one
should notice that the value is normalized to the density
of GeV particles, which only live in the immediate vicinity
of the source and generate small scale fields to which high
energy particles are almost insensitive. At Mpc scales,
where only high energy particles can reach, the field
strength is much lower as we discuss below.
Assuming again that the diffusion coefficient is Bohm-

like, one can write

DðE; rÞ ¼ 4.8 × 1016E2
GeVL

−1=2
44 B−1

−10 cm2=s; ð22Þ

which leads to an estimate of the diffusion time, τdiff ¼
6.2 × 1024E−2

GeVL
1=2
44 B−10r2Mpc yr. Requiring that particles

reach the location at distance r in a time shorter than the age
of the Universe, we then obtain

rconf ≈ 0.5

�
E

107 GeV

�
L−1=4
44 B−1=2

−10 Mpc: ð23Þ

Following the usual procedure, one can calculate the
growth rate of the fastest modes

γmax ¼
ffiffiffiffiffiffi
4π

ρb

s
ecnCRð> EÞ

2
¼ 1.9 × 1018L44B2

−10E
−3
GeV s−1;

ð24Þ

and impose the condition that γmaxt0 > 5, which reads

E≲ Egrowth ≈ 5.3 × 1011 GeV × L1=3
44 B2=3

−10: ð25Þ

The intersection of all the conditions listed above leads
us to conclude that particles with energies

E < Ecut ¼ 2.2 × 108 GeV × L1=4
44 B1=2

−10λ10 ð26Þ

will be confined within a radius

rconf ≈ 10 Mpc × λ10: ð27Þ
The amplified magnetic field at such distance is

δB ≈ 3 × 10−9 G × L1=4
44 B1=2

−10λ
−1
10 : ð28Þ

We emphasize again that the results illustrated both in the
case of 3D (lower B0) or 1D propagation (higher B0) are
only sensitive to the CR current, and hence insensitive to
whether particle propagation is ballistic or diffusive.
Discussion and conclusions.—It is often the case that

CRs affect the environment in which they propagate, through
the emission and absorption of waves that couple them with
the background plasma. The phenomenon of the self-
generation of waves is especially important close to shock
fronts, where this process heavily affects the maximum
energy that can be reached [3,12] and is accompanied by
observational consequences [13,14], such as spatially thin
rims of enhanced x-ray synchrotron emission (see [15] for a
review). Here we investigated these processes when CRs start
their journey from extra-Galactic sources: the escaping CRs
form an electric current to which the background plasma, at
density Ωbρcr, reacts, by generating a return current that in
turn leads to the development of small scale instabilities. The
growth of such instabilities leads to large turbulent magnetic
fields and to enhanced particles’ scattering.
The details of this process depend on the strength of the

preexisting magnetic field B0: if it is very weak (say
≲10−10 G) then, in the absence of nonlinear phenomena,
CRs will try to propagate in approximately straight
lines. The resulting electric current leads to the develop-
ment of a Bell-like instability, which modifies the
propagation of particles to be diffusive: particles with
energy ≲107L2=3

44 GeV are confined inside a distance

of ≈3.8L1=6
44 Mpc from the source for times exceeding

the age of the Universe, thereby introducing a low-energy
cutoff at such energy in the spectrum of CRs reaching the
Earth. Since the confinement distance is weakly dependent
on the source luminosity, we conclude that a region with
∼nG fields should be present around any sufficiently
powerful CR source. If larger background magnetic fields
are present around the source, the gyration radius of the
particles can be smaller than the coherence scale of the
field, and in this case CR propagation develops in basically
one spatial dimension. For a coherence scale of 10 Mpc,
CRs are confined in the source proximity for ener-
gies, E≲ 2 × 108L1=4

44 B1=2
−10λ10 GeV.

It is currently not known whether the confinement
phenomenon occurs in one or the other regime since only
limits exist on cosmological magnetic fields: upper limits
can be obtained from Faraday rotation measures [16] but
these limits are rather weak (≲nG) and model dependent. A
lower limit can be found from γ-ray observations of distant
TeV sources [17,18] and these limits are typically at the
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level, B0 ≳ 10−17 G. Numerical simulations of large scale
structure formation in the presence of background magnetic
fields typically find ∼10−13 G magnetic fields in voids [19]
(although see [20] for different conclusions).
The physical prescription adopted here leads to estimat-

ing the strength of the self-generated magnetic field δB at
the level of equipartition with the energy in the form of
escaping cosmic rays, independent of the value of the
preexisting field, B0. Aweak dependence on B0 was instead
found for the saturation level in [5], which in our case
would lead to δB about ∼10 times smaller for small values
of B0, thereby reducing the energy below which CRs are
confined in the source proximity. Understanding the
dynamics of the magnetic field amplification and saturation
is clearly very important. One could test the amplification
mechanism in the case of supernova remnant shocks: in this
case the saturation criterion used here translates to
δB ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πwCRvS=c

p
, with vS the velocity of the supernova

blast wave and wCR is the energy density in accelerated
particles. Applying this criterion, we obtain an estimate of
the magnetic field which is in good agreement with that
measured in young galactic SNRs [15]. On the other hand,
due to the relatively small value of δB=B0, the saturation
provided by [5] would return a value of δB only a factor ∼2
smaller, too small a difference to discriminate between the
two estimates. The testing is then left to numerical experi-
ments studying the propagation of a current of energetic
particles in a low density, low magnetic field plasma:
hybrid simulations with this aim are currently ongoing.
The phenomenon of CR confinement illustrated here has

profound implications for the description of the transition
region between Galactic and extra-Galactic CRs [8,9,11]. It
is rather tantalizing that the cutoff obtained here as due to
self-trapping is in the same range of values that have
previously been invoked in the literature based upon
phenomenological considerations.
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