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Introduction.—The Heisenberg chain of n spins 1=2with
the Hamiltonian (known as the XXX model)

H ¼
Xn−1
x¼0

ð~σx · ~σxþ1 þ 1Þ; ð1Þ

where ~σx ¼ ðσxx; σyx; σzxÞ are Pauli operators and periodic
boundaries are assumed ~σn ≡ ~σ0, is arguably the simplest
nontrivial interacting quantum many-body model. The
spectrum and eigenstates of H can be formulated in terms
of the famous Bethe ansatz [1], which gave birth to the
theory of quantum integrable systems [2,3]. Equation (1)
has been originally proposed as the model of (anti)ferro-
magnetism in solids [4] and is, indeed, a very good
description of the modern spin-chain materials [5]. It
may also be considered as a fundamental paradigm of
quantum statistical mechanics which is being used for
developing theoretical mechanisms of nonequilibrium
dynamics and thermalization or relaxation to the general-
ized Gibbs ensemble (GGE) [6–8].
The relaxation dynamics based on quantum quenches

[9–12] gave firm evidence that the full set of (∼n) local
conserved operators, the existence of which is granted for a
quantum integrable system, is incomplete, in the sense that
it cannot describe the steady state completely through a
GGE. Similarly, a numerical experiment counting the
number of linearly independent time-averaged local oper-
ators [13] indicated that the set of local conserved charges
should be incomplete and numerical approximations of
new quasilocal operators have been put forward.
In this Letter, we explicitly construct new families

of nonlocal but quasilocal operators by composition of a
transfer matrix (TM)—in the sense of an algebraic Bethe
ansatz but for higher integer or half-integer auxiliary
spins s > 1

2
—and its derivative, at a special combination

of spectral parameters, which in the thermodynamic
limit (TL) becomes equivalent to a logarithmic derivative
of a TM. Furthermore, we prove quasilocality (in full rigor
for a finite set of auxiliary spins s) as well as linear
independence of these new operator families with respect to
local conserved charges. Generally, we identify quasilo-
cality with the condition of factorizability of the largest

eigenvalue of an auxiliary TM that enters in the compu-
tation of the norm of the conserved operator, i.e., a product
of a higher-spin TM and its derivative. As we facilitate
finite-dimensional unitary representations of quantum or
Lie symmetries, the new quasilocal operators are always
spin-reversal symmetric unlike in alternative recent con-
structions in the XXZ chain [14–17] which only work at
special commensurate values of anisotropy. These features
promise that our technique shall be applicable for generat-
ing new quasilocal charges in other generic integrable
models with Lie or quantum group symmetries. Being
able to construct a complete or as-large-as-possible set of
independent quasilocal conserved charges is crucial for any
application in quantum statistical mechanics besides con-
structing the GGE, e.g., in linear response theory at finite
temperatures, studies of quantum ergodicity and many-
body localization, etc. Quasilocal conservation laws are
also closely related to boundary-driven or dissipative
quantum chains [14,18].
Transfer matrices and conserved operators.—Let Vs,

s ∈ 1
2
Zþ denote a (2sþ 1)-dimensional spin-s module,

Vs ≡ C2sþ1 ¼ lspfjmi; m ¼ −s;−sþ 1;…; sg, with lsp
denoting a linear span of a set of vectors carrying the
unitary irreducible representation of SUð2Þ with generators

szjmi ¼ mjmi;
s�jmi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 1�mÞðs∓mÞ

p
jm� 1i: ð2Þ

The physical Hilbert space is an n-fold tensor product
of fundamental representations Hp ¼ V⊗n

1=2, with σz ≡ 2sz,

σ� ¼ 1
2
ðσx � iσyÞ≡ s�. Fixing arbitrary s ∈ 1

2
Zþ and

considering another auxiliary Hilbert space Ha ¼ Vs, we
define Lax matrices as operators over Hp ⊗ Ha,

Lx;aðλÞ¼ λ1þσzxszaþσþx s−a þσ−x sþa ¼ λ1þ ~σx ·~sa; ð3Þ

where λ ∈ C is the spectral parameter. Throughout the
Letter, operators acting nontrivially over the auxiliary
Hilbert space are written in bold or double-strike font if
acting over multiple (tensor product of) auxiliary spaces.
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As a simple consequence of Yang-Baxter equation, the
(physical) TMs TsðλÞ ∈ EndðHpÞ,

TsðλÞ ¼ traL0;aðλÞL1;aðλÞ…Ln−1;aðλÞ; ð4Þ

where s is the auxiliary spin, form a commuting family

½TsðλÞ; Ts0 ðλ0Þ� ¼ 0 ∀ s; s0; λ; λ0: ð5Þ

The fundamental TM T1=2ðλÞ is generating the complete set
of local conserved Hermitian operators

Qk ¼ −i∂k−1
t logT1=2

�1
2
þ it

����
t¼0

¼
Xn−1
x¼0

Ŝxð12n−k ⊗ qkÞ;

ð6Þ

k ≥ 2, with Q2 ¼ H=2, where qk ∈ EndðV⊗k
1=2Þ is a k-point

operator density, and Ŝ is a cyclic lattice shift map over
EndðHpÞ defined by ŜðσαxÞ ¼ σαmodðxþ1;nÞ.
Locality and quasilocality.—The 4n-dimensional space

of physical operators EndðHpÞ is turned into a Hilbert
space by defining a Hilbert-Schmidt (HS) inner product
ðA;BÞ ≔ hA†Bi with respect to the infinite-temperature
state hAi ≔ 2−ntrA. Let fAg ≔ A − hAi1 denote the
traceless part of an operator. One of the physically most
important features of the local conservation laws Qk is the
extensivity of the HS norm ∥fQkg∥2HS ≔ ðfQkg; fQkgÞ ¼
ð2−ktrðq†kqkÞ − j2−ktrqkj2Þn ∝ n. We define (equivalently
to Ref. [16]) a general traceless translationally invariant
operator A ¼ ŜðAÞ ∈ EndðHpÞ as quasilocal if two
conditions are met: (i) ∥A∥2HS ∝ n, and (ii) for any
locally supported k-site operator b ¼ bk ⊗ 12n−k, the
overlap (b; A) is asymptotically, as n → ∞, independent
of n.
One should stress that quasilocality only makes sense in

TL n → ∞, as it is the property of an infinite sequence
of operators labeled by n rather than operators for any
fixed size n. More intuitively, a quasilocal operator Q
can be thought of as a convergent sum of local operators
Q¼P∞

r¼1Q
ðrÞ, where QðrÞ includes only terms supported

on r contiguous sites, and the sum ∥Q∥2HS¼
P∞

r¼1∥QðrÞ∥2HS
is rapidly (typically exponentially) converging. Usually
[14–16], quasilocality can be detected by inspecting
the leading eigenvalue of a certain auxiliary transfer matrix,
whose rth power yields the partial norm of the r-site terms
∥QðrÞ∥2HS. The effect of quasilocal conserved operators to
statistical mechanics is arguably as important as that
of local operators. In particular, quasilocal charges can
be understood as those conserved operators of one-
dimensional systems which can influence equilibrated
(steady-state) values, say, after a quantum quench, of strictly
local observables. Our central result is the following.

Theorem: Traceless operators XsðtÞ, s ∈ 1
2
Zþ; t ∈ R

defined over the physical Hilbert space Hp as

XsðtÞ ¼ ½τsðtÞ�−n
�
Ts

�
−
1

2
þ it

�
T 0
s

�
1

2
þ it

�	
; ð7Þ

τsðtÞ ¼ −t2 −
�
sþ 1

2

�
2

; ð8Þ

where T 0
sðλÞ≡ ∂λTsðλÞ are quasilocal for all s; t and

linearly independent from fQk; k ≥ 2g for s > 1
2
.

The fact that XsðtÞ are exactly conserved and
½XsðtÞ; Xs0 ðt0Þ� ¼ ½XsðtÞ; Qk� ¼ 0 follows directly from
Eq. (5). The form of our ansatz (7) is inspired from an
observation [see Eq. (6) or, e.g., Ref. [19] ] that at s ¼ 1

2
,

TM becomes in TL n → ∞, a unitary operator

T1=2

�
1

2
þ it

�
≃ exp

�
i
X∞
k¼1

tk

k!
Qkþ1

�
; ð9Þ

and, hence, Eq. (7) can be associated with a logarithmic
derivative via T†

sðλÞ≡ TT
s ðλ̄Þ ¼ ð−1ÞnTsð−λ̄Þ, where the

last equality is due to spin-reversal symmetry sz → −sz,
s� → −s∓.
Proof of quasilocality.—First, we write a matrix product

form of a general product of a pair of TMs [20]

TsðμÞTsðλÞ ¼ tra1;a2
Yn−1
x¼0

�X
α∈J

Lα
s ðμ; λÞσαx

�
; ð10Þ

where the operators Lα
s ðμ; λÞ, α ∈ J ≔ f0; x; y; zg act over

a pair of auxiliary spaces Ha1 ⊗ Ha2 ≡ Vs ⊗ Vs,

L0
sðμ; λÞ ¼ λμ1þ ~sa1 · ~sa2 ; ð11Þ

~Lsðμ; λÞ ¼ i~sa1 × ~sa2 þ λ~sa1 þ μ~sa2 : ð12Þ

The identity component can be written with the Casimir
operator C¼ð~sa1þ~sa2Þ2 as L0

s¼μλ1þ1
2
ðC−~s2a1−~s

2
a2Þ;

hence, its spectrum reads τjsðμ;λÞ¼½jðjþ1Þ=2�−sðsþ1Þþ
μλ, j ¼ 0; 1;…; 2s. Placing the spectral parameters along
one of the two lines

D� ¼ fðμ�t ; λ�t Þ; t ∈ Rg ⊂ C2;

μ�t ≔ ∓ 1

2
þ it; λ�t ≔ � 1

2
þ it; ð13Þ

we define the restricted auxiliary operators as L�α
s ðtÞ ≔

Lα
sðμ�t ; λ�t Þ. The dominating eigenvalue of Hermitian oper-

ator Lþ0
s ðtÞ≡ L−0

s ðtÞ is τsðtÞ ¼ τ0sðμ�t ; λ�t Þ, Eq. (8), corre-
sponding to the singlet eigenstate
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jψ0i ¼ ð2sþ 1Þ−1=2
Xs
m¼−s

ð−1Þs−mjmi ⊗ j −mi; ð14Þ

with a finite gap to the subleading eigenvalue
τ0sðtÞ, δ ¼ log jτsðtÞ=τ0sðtÞj > 0, for any t. The condition
ð~sa1 þ ~sa2Þjψ0i ¼ 0 and the SUð2Þ algebra ~sak × ~sak ¼ i~sak
imply the following useful identities:

~L−
s ðtÞjψ0i ¼ 0; hψ0j~L−

s ðtÞ ¼ −2hψ0j~sa1 ;
hψ0j~Lþ

s ðtÞ ¼ 0; ~Lþ
s ðtÞjψ0i ¼ 2~sa1 jψ0i: ð15Þ

We proceed by constructing a TM over a four-spin auxiliary
space Ha ¼⊗4

k¼1 Hak , Ha1;2 ≡ Vs, Ha3;4 ≡ Vs0 ,

T s;s0 ðμ; λ; μ0; λ0Þ ¼
X
α∈J

Lα
s ðμ; λÞ ⊗ Lα

s0 ðμ0; λ0Þ; ð16Þ

which helps us to compute a general inner product of the
form Ks;s0 ðt; t0Þ ≔ (XsðtÞ; Xs0 ðt0Þ). The Hilbert-Schmidt
kernel (HSK) then immediately follows after differentiating
traces of powers of suitable TMs

Ks;s0 ðt; t0Þ ¼ ½τsðtÞτs0 ðt0Þ�−n∂λ−t
∂λþ

t0
ðtr½T s;s0 ðμ−t ; λ−t ; μþt0 ; λþt0 Þ�n

− tr½L0
sðμ−t ; λ−t Þ�ntr½L0

s0 ðμþt0 ; λþt0 Þ�nÞ: ð17Þ

As a consequence of the boundary condition given by
Eq. (15), we obtain that τs;s0 ðt; t0Þ ≔ τsðtÞτs0 ðtÞ is always
an eigenvalue of T s;s0 ðt; t0Þ ≔ T s;s0 ðμ−t ; λ−t ; μþt0 ; λþt0 Þ with a
product-singlet eigenvector jΨ0i ¼ jψ0i ⊗ jψ0i. One
can further show that it is always a dominating and non-
degenerate eigenvalue by demonstrating that T s;s0 ðt; t0Þ −
τsðtÞτs0 ðtÞ1 is a negative definite operator onHanCjΨ0i (see
Secs. A and B of Ref. [21] for details). (We note though
that we managed to rigorously prove negativity only
for s ≤ s0 ¼ 3=2 and further succeeded to confirm it with
exact numerical computations up to much larger maximal
auxiliary spin s0, while for any s it formally remains a
conjecture.) Denoting by τs;s0 ðμ; λ; μ0; λ0Þ the continuation
of the dominating eigenvalue in the proximity of the
domain D− ×Dþ and using Hellmann-Feynman theorem
to evaluate its first derivatives ∂λ−t

τs;s0 ðμ−t ; λ−t ; μþt0 ; λþt0 Þ ¼
∂λ−t

τ0sðμ−t ; λ−t Þτ0s0 ðμþt0 ; λþt0 Þ, ∂λþ
t0
τs;s0 ðμ−t ; λ−t ; μþt0 ; λþt0 Þ ¼

τ0sðμ−t ; λ−t Þ∂λþ
t0
τ0s0 ðμþt0 ; λþt0 Þ, the HSK can be computed as

Ks;s0 ðt; t0Þ ¼ n½τsðtÞτs0 ðt0Þ�−1∂λ−t
∂λþ

t0
½τs;s0 ðμ−t ; λ−t ; μþt0 ; λþt0 Þ

− τ0sðμ−t ; λ−t Þτ0s0 ðμþt0 ; λþt0 Þ� þOðe−γnÞ: ð18Þ

Remarkably, the n2 term exactly cancels, while the finite-
size corrections are exponentially small in the gap γ ¼
log jτs;s0 ðt; t0Þ=τ0j > 0 to subleading eigenvalue τ0 of

T s;s0 ðt; t0Þ. We shall later derive an explicit expression for
the HSK.
What remains to be shown is that XsðtÞ has well-defined

expansions in terms of local operators in TLn → ∞. For any
k-local basis operator σα1∶k≔σα11 σα22 …σαkk , α1;k ≠ 0, wewrite
the component of Eq. (7) as ½τsðtÞ�−n∂λþt (σ

α
1∶k;Tsðμþt Þ×

Tsðλþt Þ). For treating n → ∞ asymptotics, we substitute
½Lþ0

s ðtÞ=τsðtÞ�n−k ¼ jψ0ihψ0j þOðe−δnÞ and take into
account the fact that the λ derivative should always hit

the first factor, producing ∂λ
~Ls ¼ ~sa1 ; otherwise, the whole

term would vanish due to Eq. (15). Thus, we find a compact
matrix product formula for the components (with the k ¼ 1
component vanishing)

(σ
α
1∶k;XsðtÞ)¼hψα1 jXα2 � � �Xαk−1 jψαkiþOðe−δnÞ; ð19Þ

where Xα ≔ Lþα
s ðtÞ=τsðtÞ, jψαi ≔

ffiffiffi
2

p
sαa1 jψ0i=τsðtÞ. The

HS norm of XsðtÞ projected onto l sites in the limit
n − l → ∞ can be written analogously to Eq. (17)

lim
n→∞

Xl
k¼2

ðl − kþ 1Þ
X
α

j(σα1∶k; XsðtÞ)j2

¼ 1

½τsðtÞ�2l
∂λ−t

∂λþt

�
hΨ0j(T s;sðμ−t ; λ−t ; μþt ; λþt Þ)ljΨ0i

− hψ0j(L0
sðμ−t ; λ−t Þ)ljψ0ihψ0j(L0

sðμþt ; λþt Þ)ljψ0i
�
;

ð20Þ

thus, resulting in expression ∝ l, cf. Eq. (18), without
any finite-size (l-dependent) corrections as jΨ0i is an exact
eigenstate. We have, thus, shown that the expansion

XsðtÞ ¼ lim
l→∞

lim
n→∞

Xl
k¼2

X
α

(σ
α
1∶k; XsðtÞ)

Xn−1
x¼0

Ŝxðσα1∶kÞ

ð21Þ

is complete in the HS norm. ▪
Equations (20) and (21) have two useful implications:

(i) As the state jΨ0i is a spin singlet (in four-spin auxiliary
space), the only relevant part of the SUð2Þ invariant
TM T s;s0 ðt; t0Þ ¼

P
αL

−α
s ðtÞ ⊗ Lþα

s0 ðt0Þ, is the ð2J þ 1Þ-
dimensional block J ¼ minfs; s0g constituting the spin
singlet subspace of Ha, where it can be written explicitly
as a tridiagonal matrix (see Sec. A of Ref. [21]). (ii) The
HSK can be compactly written in terms of the resolvent
of the TM, similar as in Ref. [16], namely, Ks;s0 ðt; t0Þ ¼
n
P∞

k¼0hΨj½ ~T s;s0 ðt; t0Þ�kjΨi, where ~T s;s0 ðt; t0Þ ¼ T s;s0 ðt; t0Þ=
½τsðtÞτs0 ðt0Þ� and jΨi ¼ P

α∈fx;y;zgjψαi ⊗ jψαi, e.g., via
solving a system of 2J linear equations
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Ks;s0 ðt; t0Þ ¼ nhΨjΦi; ½1 − ~T s;s0 ðt; t0Þ�jΦi ¼ jΨi:
ð22Þ

By deriving the explicit form of matrix elements of
T s;s0 ðt; t0Þ and solving Eq. (22), we can encode the HSK
explicitly in terms of a superposition of Cauchy-Lorentz
distributions (assuming s ≤ s0) (see Sec. A of Ref. [21])

Ks;s0 ðt;t0Þ¼n
κs;s0 ðt−t0Þ
τsðtÞτs0 ðt0Þ

;

κs;s0 ¼
X2s
l¼1

l½lþ2ðs0−sÞ�ð2sþ1−lÞð2s0þ1þlÞ
ð2sþ1Þð2s0þ1Þ cs0−sþl;

wherecsðτÞ≔
s

s2þτ2
: ð23Þ

Note that the HSK is symmetricKs;s0 ðt; t0Þ ¼ Ks0;sðt0; tÞ and
strictly positive Ks;s0 ðt; t0Þ > 0; ∀ s; s0; t; t0.
We would like to remind the reader that in the TL

n → ∞, the s ¼ 1
2
family X1=2ðtÞ is equivalent to the family

of local charges Qk, as follows from Eqs. (7) and (9)

X1=2ðtÞ¼
X∞
k¼0

tk

k!
Qkþ2; Qkþ2¼∂k

t X1=2ðtÞjt¼0: ð24Þ

Equation (19), thus, generates also a handy explicit matrix
product representations of the standard local conservation
laws Qk or their densities qk.
Proof of linear independence.—Let us first show that

X1ðtÞ are linearly independent from X1=2ðtÞ, i.e., from Qk.
We define an operator

~X1ðtÞ ¼ X1ðtÞ −
Z

∞

−∞
dt0ftðt0ÞX1=2ðt0Þ; ð25Þ

where the function ftðt0Þ is determined by minimizing the
HS norm ∥ ~X1ðtÞ∥2HS, i.e., by the variation

δ

δftðt0Þ
( ~X1ðtÞ; ~X1ðtÞ) ¼ 0; ð26Þ

resulting in the Fredholm equation of the first kind

Z
∞

−∞
dt00K1=2;1=2ðt0; t00Þftðt00Þ ¼ K1=2;1ðt0; tÞ: ð27Þ

Using the fact that the kernels (23) are related to Cauchy-
Lorentz distributions csðtÞ up to trivial rescalings, we
make an ansatz ftðt0Þ¼½τ1=2ðt0Þ=τ1ðtÞ�φðt−t0Þ which maps
Eq. (27) to a linear convolution equation 3

4
c1 � φ ¼ 4

3
c3=2,

which, using thewell-known convolution identity cs � cs0 ¼
πcsþs0 , results in φ ¼ ð16=9πÞc1=2, or

ftðt0Þ ¼
8

9π

1þ t02

½ð3=2Þ2 þ t2�½ð1=2Þ2 þ ðt − t0Þ2� : ð28Þ

The conclusion of this analysis is that a family ~X1ðtÞ is
(a) quasilocal (see Sec. D of Ref. [21] for a numerical
example) as its HSK computed via Eqs. (23), (25), and (28)
is extensive ( ~X1ðtÞ; ~X1ðt0Þ) ¼ ½n=τ1ðtÞτ1ðt0Þ�½89 c1ðt − t0Þ −
4
27
c2ðt − t0Þ� and (b) is orthogonal to (and, hence, linearly

independent from) all known local operators contained in
the s ¼ 1=2 familyX1=2ðtÞ; namely, we have ( ~X1ðtÞ; Qk) ¼
( ~X1ðtÞ; X1=2ðt0Þ) ¼ 0, for all t; t0; k. More generally,
one can orthogonalize XsðtÞ for higher s to all previous
Xs0 ðt0Þ for s0 < s by making an ansatz ~XsðtÞ ¼ XsðtÞ
−
R∞
−∞ dt0ðfts;s−1=2ðt0ÞXs−1=2ðt0Þ þ fts;s−1ðt0ÞXs−1ðt0ÞÞ, with

explicit expressions for bounded integrable functions
fts;s−1ðt0Þ; fts;s−1=2ðt0Þ. These families are HS orthogonal

for different auxiliary spins, namely, ( ~XsðtÞ; ~Xs0 ðt0Þ) ¼ 0

for s ≠ s0, while ( ~XsðtÞ; ~XsðtÞ) > 0, i.e., ~XsðtÞ ≠ 0, for all
s; t (for details, see Sec. C of Ref. [21]). This implies that
XsðtÞ are linearly independent from all previous Xs0 ðt0Þ for
s0 < s and, in particular, from X1=2ðt0Þ or Qk. ▪
Discussion.—We have proposed a direct extension

of local conserved operators derived from the logarithm
of the fundamental TM [2,3,22] to higher-spin auxiliary
spaces. We have proved that in such a case, the resulting
operators are quasilocal. An interesting side result of
our statement is an asymptotic (thermodynamic) n → ∞
inversion formula [23] T−1

s ð1
2
þ itÞ≃ ½τsðtÞ�−1Tsð− 1

2
þ itÞ,

valid for any s ∈ 1
2
Zþ, which can be proven by imple-

menting our matrix product formula (19) together with
the gap statements (Sec. B of Ref. [21]) to show that
Tsðμ�t ÞTsðλ�t Þ≃ τsðtÞ1. Our quasilocal operators XsðtÞ
(7) can, thus, be understood as logarithmic derivatives of
Tsðλþt Þ. In TL n → ∞, they become Hermitian operators
for any t ∈ R. For s ¼ 1

2
, the Taylor expansion coeffi-

cients in t turn out to be local operators, while for s > 1
2
,

they remain nonlocal but quasilocal. One could, thus,
equivalently work with a discrete series of quasilocal
operators Qs;kþ2 ¼ ð1=k!Þ∂k

t XsðtÞjt¼0, s ∈ 1
2
Zþ; k ∈ Zþ,

rather than with a series of continuous families XsðtÞ. As
a double index suggests, the number of relevant quasi-
local charges in a large finite system may grow as n2,
rather than n as in the ultralocal case, although this
question cannot be made precise with the results at hand.
Our results promise a number of timely applications and

generalizations. The new quasilocal families should be
included in order to correctly describe the k → 0;ω → 0
limit of dynamical structure factors and general Drude
weights at finite temperatures [24–26] or the GGE in
quantum quench protocols [8]. For computing stationary
expectations of local observables after a quench from a
nonthermal initial state, such as, e.g., the Néel state jNi, one
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can readily demonstrate extensivity hNjXsðtÞjNi ∝ n
by extracting the leading eigenvalue of an associated
transfer matrix, essentially proceeding along the lines of
the calculation done in Ref. [19] for the fundamental
(s ¼ 1=2) TM. Appropriate q deformations of the concepts
developed in this Letter should provide additional quasi-
local operator families for the anisotropic Heisenberg
model (XXZ chain). Extensions to SUðNÞ symmetric
integrable spin chains seem straightforward, whereas a
generalization to continuous quantum integrable systems
and field theories (such as Lieb-Liniger or sine-Gordon
models) should be a challenge for the future. We close by
stressing an important point of distinction with respect to
spin-reversal symmetry breaking quasilocal conserved
operators in the XXZ model [14–17]. Quasilocality, as
abstractly formulated here, requires a finite-dimensional
(but nonfundamental) representation of a quantum TM
and a factorizability condition for the leading eigenvalue of
the associated auxiliary TM. This can happen either for
irreducible unitary representations of the symmetry group
but will result in operators which are always even under
spin reversal, as is the case here, or due to the root-of-unity
(commensurability) condition for the anisotropy, where
highest-weight-type nonunitary representations become
reducible to finite-dimensional ones, such as in the
XXZ model.
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