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We investigate the link between information and thermodynamics embodied by Landauer’s principle in the
open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a
collisional model with a finite temperature reservoir. We demonstrate that Landauer’s principle holds, for such
a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change
of the entropy of the system. Quite remarkably, such a principle for heat and entropy power can be explicitly
linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the
non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.
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Logical irreversibility and heat dissipation are linked
through the relation provided by Landauer in 1961 [1]: The
erasure of information on the state of a system is con-
comitant with the dissipation of heat into the surroundings.
In turn, such heat is lower bounded by a change in the
information-theoretic entropy of the system. Landauer’s
principle, which has been recently tested [2], was a building
block of remarkable advances in our understanding of
thermodynamics and its links with logical irreversibility
and information theory [3].
Recent progress in the quantum approach to nonequili-

brium statistical mechanics [4,5] has made the tracking
of quantities such as heat, work, and entropy possible in
an experimentally viable way. In turn, this has enabled the
test bed demonstration of the link between information
and energy in quantum systems subjected to elementary
quantum computation protocols [6]. The relation between
information and the thermodynamic costs of quantum
operations has been extensively addressed in the recent
past. Notable examples include Refs. [7] (see [8] for a
recent overview). Techniques of quantum statistical
mechanics have been used to prove that a finite-size
environment can provide tighter bounds to the heat gen-
erated in an erasure process [9,10]. The validity of
Landauer’s principle has been verified for a quantum
harmonic oscillator strongly coupled to a bath of bosonic
modes [11]. However, such conceptual and experimental
progress has not yet resulted in a satisfactory microscopic
quantum framework able to account for the emergence of
Landauer’s principle.
In this Letter we provide a derivation of a Landauer-like

principle that addresses the heat and entropy fluxes implied
in an erasure process described by a collision-based picture

of open-system dynamics [12]. Such a microscopic formu-
lation has been used to examine the process of thermalization
of a quantum system in contact with a nonzero temperature
bath and to investigate the link between non-Markovianity
and quantum correlations [13–15]. Here, we bring together
these two perspectives: We analyze the process of
information-to-energy conversion in collisional models that
make use of general, nonrestrictive assumptions and effec-
tive mechanisms to describe the heat dissipation into an
environment. Our Letter thus aims at bridging the gap
highlighted above and contributes to the ongoing research
for a satisfactory foundation of Landauer’s principle. The
advantages of our approach are manifold. First, modeling the
irreversible dynamics of a system by a collisional model
where, at each step, the environment is reset in a thermal
state enables the formulation of Landauer’s principle in
terms of (heat and entropy) powers. Second, we show that
the amount of heat dissipated by a multipartite quantum
system is lower bounded by the correlations established
among the elements of the system itself. Finally, the
flexibility of the picture adopted here allows us to unveil
interesting links between the violation of Landauer’s prin-
ciple and the emergence of memory-bearing effects leading
to non-Markovian dynamics.
Erasure through thermalization.—We focus on the

thermalization process of a system S in contact with an
environmentR endowed with a large number of degrees of
freedom, which can thus be treated as a bath [12]. In our
model R consists of a collection of N identical noninter-
acting elements Rn, hereafter dubbed “subenvironments,”
each of which is assumed to be in a thermal state. The
bath is, therefore, in the product thermal state η ¼⊗N

n¼1 η
th
n ,
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with ηthn ¼ e−βĤRn =Tr½e−βĤRn �, ĤRn
the free Hamiltonian

of the nth subenvironment, and β the inverse temperature.
We call ĤS the free Hamiltonian of the system and, with
no loss of generality, we assume ĤRn

¼ ĤR for any n. The
system interacts with the environment via a sequence of
pairwise collisions with individual subenvironments. The
assumption of a big reservoir implies that the system never
interacts twice with the same subenvironment; therefore, at
each collision the state of the subenvironment is refreshed
and the system always interacts with subenvironments in
a thermal state. Each collision is described by a unitary
operator Û ¼ e−igV̂τ, where g is a coupling constant, τ is the
collision time, and V̂ ¼ P

kŜk ⊗ R̂k is the (dimensionless)
S −Rn interaction Hamiltonian [Ŝk (R̂k) are Hermitian
operators acting on S (Rn)]. The information initially
encoded in ρ is gradually diluted into R. After the
ðnþ 1Þth collisions, we find the states ρnþ1 of the system
and η0nþ1 of the environment,

ρnþ1 ¼ TrR½Ûρn ⊗ ηthnþ1Û
†� ¼ Φ½ρn�; ð1Þ

η0nþ1 ¼ TrS½Ûρn ⊗ ηthnþ1Û
†� ¼ Λn½ηthnþ1�; ð2Þ

where Φ ðΛnÞ is a completely positive trace-preserving
(CPTP) map on S (R) [16]. Unlike Φ, map Λn does depend
on n through ρn. A formal definition of mean heat flux
and work is obtained considering infinitesimal changes of
internal energy as δTr½μĤ� ¼ Tr½μδĤ� þ Tr½δμĤ�, where μ
is the density matrix of a system with Hamiltonian Ĥ [17].
The first term is identified with the average work done on or
by the system; the second, which disappears for a unitary
evolution, is a heat flux. Such arguments have been more
recently reprised in Refs. [18]. In this sense, based on
Eqs. (1) and (2), the corresponding energy variation of
the systemΔEnþ1 and heat exchange with reservoirΔQnþ1,
are given by

ΔEnþ1 ¼ Tr½ĤSðΦ − IÞ½ρn��;
ΔQnþ1 ¼ Tr½ĤRðΛn − IÞ½ηth��:

We next assume hR̂kiηthk ¼ TrR½R̂kη
th
k � ¼ 0 (this is possible,

without affecting our results, by moving into an interaction
representation with respect to a suitably redefined local
Hamiltonian of S, done without affecting our results).
Assuming that each collision lasts a short time, we can
expand (Φ − I) in series up to second order in y ¼ gτ to find
Δρnþ1 ¼ ðΦ − IÞρn ¼ K2ρn, with K2¼TrR½V̂ðρn⊗ηthÞV̂−
fV̂2;ρn⊗ηthg=2�. This gives us

ΔEnþ1¼ g2τ2
X
kj

hR̂kR̂jiηthhŜkĤSŜj− 1
2
fŜkŜj;ĤSgiρn ; ð3Þ

ΔQnþ1¼g2τ2
X
kj

hŜkŜjiρnhR̂kĤRR̂j−1
2
fR̂kR̂j;ĤRgiηth : ð4Þ

In the limit τ≃ 0 and n ≫ 1, the quantity t ¼ nτ becomes
a continuous variable, ρn → ρðtÞ and ðρnþ1 − ρnÞ=τ → _ρ,

so that we get the master equation (ME) _ρ ¼ K2½ρðtÞ�.
Likewise, Eqs. (3) and (4) become

_E ¼ γ
X
k;j

hR̂kR̂jiηthhŜkĤSŜj − 1
2
fŜkŜj; ĤSgiρ; ð5Þ

_Q ¼ γ
X
k;j

hŜkŜjiρhR̂kĤRR̂j − 1
2
fR̂kR̂j; ĤRgiηth ; ð6Þ

where we have defined the rate γ ¼ g2τ, achieved by taking
both g → ∞ and τ → 0 so that g2τ is a constant. By doing so,
we would guarantee the system-environment effects to
persist (different from what is obtained by taking τ → 0).
As discussed in Refs. [13,14], with the assumption on hR̂kiη
invoked above, such a continuous-time limit is fully con-
sistent and legitimate. By construction, ρðtÞ evolves accord-
ing to a CPTP dynamical map [12,16]. We now focus
on energy-conserving S −R interactions and assume
½Û; ðĤS þ ĤRÞ� ¼ 0. Hence, _Q ¼ − _E and the stationary
state of the system is the Gibbs state at the same initial
temperature of the bath, i.e., ρeq ¼ e−βHS=Tr½e−βHS �. In this
case, the stationary state is such that _E ¼ _Q ¼ 0, which is
not verified by non-energy-conserving models. In such
cases, the steady state corresponds to a constant flux of
heat into or out of the system.
The relative entropy SðρjρeqÞ between the state at time t

and the stationary state obeys the relation _SðρjρeqÞ ¼
− _SðρÞ þ β _E [19]. Because of the nonincreasing nature
of the relative entropy under CPTP maps [20], we obtain

β _QðtÞ ≥ _~SðρÞ; ð7Þ
where ~SðρÞ ¼ −SðρÞ. This embodies an open-system
formulation of Landauer’s principle for the heat and
entropy fluxes. We can thus lower bound the flow of heat
dissipated into the environment with the rate of change of a
key information-theoretical quantity. Remarkably, our for-
mulation enables the assessment of the nature of the open-
system dynamics of S. The power of our formalism is thus
twofold: On one hand, it allows for a time-resolved analysis
of the erasure-by-thermalization process. On the other
hand, it elucidates the role of correlations in the efficiency
of information-erasure processes. This is illustrated by
two examples of irreversible collisional dynamics. We first
analyze a cascaded system where the subenvironments
interact in sequence with the elements of a bipartite system,
chosen here for ease of presentation. In this scenario, the
environment is “recycled” to erase the information in
the two subsystems before being damped. We show that
the efficiency of information erasure is limited by the
buildup of intersystem correlations. In the second example,
which we dub “indirect,” we consider a system interacting
with an ancilla whose state is then erased by the environ-
ment. In this case, we show the appearance of local
violation of Landauer’s principle due to the onset of
memory effects.
Information erasure in cascaded systems.—For now, we

consider the system S as bipartite and consisting of two
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identical subsystems SA;B. Each subenvironment Rn col-
lides with SA first and SB later. Each collision is modeled
as a unitary process with associated evolution operator
ÛX ¼ e−igV̂Xτ, (X ¼ A;B) and generator V̂X ¼ P

kŜXk ⊗
R̂k (here ŜXk acts on subsystem X). A “step” consists of an
SA −Rn collision followed by an SB −Rn one. Hence, the
joint S −R state at step nþ 1 is given by σnþ1 ¼
ÛBÛAρnη

thÛ†
AÛ

†
B (ρn is the joint SA − SB state).

Equations (1) and (2) thus still hold with Û ¼ ÛBÛA.
Through a procedure analogous to the one outlined

earlier, it can be shown that in the continuous-time limit
the bipartite system S is governed by the ME [13]

_ρ ¼
X
X¼A;B

LX½ρ� þDAB½ρ�; ð8Þ

where superoperators LX and DAB are defined by

LX½ρ� ¼ γ
X
kj

hR̂kR̂jiηth
�
ŜXjρŜXk − 1

2
fŜXkŜXj; ρg

�
; ð9Þ

DAB½ρ� ¼ γ
X
kj

hR̂jR̂kiηth ½ŜAkρ; ŜBj� þ hR̂kR̂jiηth ½ŜBj; ρŜAk�:

ð10Þ
Subsystems SA and SB jointly undergo a Markovian
dynamics. This is true also for the dynamics of SA, given
that it collides with “fresh” subenvironments every time
[21]. However, in general, SB is subjected to non-
Markovian evolution.
As before, given that no work is performed on the

system, we identify the variation rate of the internal energy
of the system _E with ΔEnþ1 ¼ Tr½ĤSðΦ − IÞ½ρn��. Using
Eq. (8) and following an approach similar to the one
presented above, it is possible to write explicitly the
expression for the heat transferred at each step of
the collision-based process, as shown in Ref. [22]. By
focusing again on energy-conserving system-environment
interactions, the identity _Q ¼ − _E holds and the system
thermalizes at the same temperature of the environment.
Accordingly, in light of the absence of any direct
SA − SB coupling, the system asymptotically reaches the

stationary state ρeq¼ρeqA ⊗ρeqB ¼e−βHSA ⊗e−βHSB =ðZAZBÞ
(here ZX ¼ Tr½e−βĤSX �); i.e., the factorized state of locally
thermal states at the same temperature. Indeed, despite the
fact that SB evolution depends on SA (thus determining
its non-Markovian character), SA thermalizes with R in a
fully Markovian fashion. Thereby, asymptotically, the
SA −Rn collisions do not change the Rn state. Thus, in
the same limit, SB will also collide with subenvironments
that are still in state ηth, forcing it to thermalize at the
temperature of the environment. We remark that the bound
stated in Eq. (7) clearly holds in the present situation,
provided that Q and ~SðρÞ refer to system S.
In order to show that recycling the environment affects

the erasure efficiency, we use the definition of quantum
mutual information IðSA∶SBÞ ¼ SðρSA

Þ þ SðρSB
Þ − SðρÞ

and conditional quantum entropy SSAjSB
¼ SðρÞ − SðρSA

Þ
[24] to get − _SðρÞ¼−2_SðρSA

Þþ _SSAjSB
− _SSBjSA

þ _IðSA∶SBÞ
and, in turn,

β _Q ≥ 2
_~SðρSA

Þ þ _SSAjSB
− _SSBjSA

þ _IðSA∶SBÞ: ð11Þ
This shows that the erasure efficiency in cascaded systems
depends on the rate at which correlations between SA
and SB are established. Indeed, the last three terms in the
right-hand side of Eq. (11) are null only for product states.

Incidentally, the rate 2
_~SðρSA

Þ is that of two identical
states erased by independent reservoirs.
Our arguments are straightforwardly extended to the

multipartite case. Using the correlation information IN ¼P
N
i¼1 Si − S1;…;N [25], which extends mutual information

to anN-partite system, Eq. (11) is extended to the erasure of
N copies as

β _Q > N _~Sðρ1Þ þ ðN − 1Þ _S1j2;…;N −
XN
k¼2

_Skj1… þ _IN: ð12Þ

We now illustrate the results described above with a
specific example. We consider an all-qubit configuration
where ĤS ¼ ðω=2ÞPX¼A;Bσ̂Xz and ĤRn

¼ ðω=2Þσ̂Rnz,
with fσ̂lig (i ¼ x; y; z) the Pauli operators of qubit
l ¼ X;Rn. Each subenvironment is prepared in the
thermal state ηth ¼ ½ð1 − ξÞ=2�j↑ih↑j þ ½ð1þ ξÞ=2�j↓ih↓j,

ηth
n−1 ηth

n ηth
n+1

AB

gg

ηth
n−1 ηth

n ηth
n+1

AB

gg

(a) (b) (c) (d)

FIG. 1 (color online). (a) Sketch of the recycled environment setup: After colliding with SA, subenvironment Rn (prepared in ηthn ) is
used to erase the state of SB. By tracing out the subenvironments, a Markovian ME is achieved for S. (b) Heat flux and entropy for a
system composed of two qubits erased by independent baths (no cascade) for ξ ¼ 0.9 and ξ ¼ −0.9 (inset). (c) Heat and entropy flux for
the cascade model. We have set γ=ω ¼ 1 with S initially prepared in j↑↑i at ξ ¼ 0.9 and ξ ¼ −0.9 (inset). (d) Mutual information
IðA∶BÞ between the subsystems in the same case of panels (b) and (c) for ξ ¼ 0.9 (solid brown line) and ξ ¼ −0.9 (dashed green line).
Heat fluxes are expressed in unit of ωγ.
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where fj↑i; j↓ig are the eigenstates of σ̂z with
ξ ¼ tanhðβω=2Þ. The SX −Rn interaction Hamiltonian is
of the isotropic XX form, i.e., V̂X ¼ P

i¼x;yσ̂Xi ⊗ σRni. In
Ref. [22] we present the form taken by Eq. (8) in this case
and show that the evolution of SA is Markovian and not
causally related to SB. Instead, the SB dynamics depend
crucially on the state of SA, thus being steered by previous
subsystem-environment collisions. The behavior of β _Q is

compared to _~SðρÞ in Fig. 1 for two different temperatures,
with each subsystem initially prepared in j↑i. To pinpoint
the role played by the SA − SB correlations in setting
the nonmonotonic temporal trend of the heat flow
[cf. Fig. 1(c)], we have studied IðA∶BÞ. Figure 1(d) shows
that the establishment of such correlations indeed acts as a
precursor of the nonmonotonicity of the heat exchanged
with the environment. In Ref. [22], we support these
conclusions with the study of a multipartite system.
Indirect erasure.—We now analyze the dynamics of a

bipartite system S, in which the evolution of the two
subsystems and their coupling to the subenvironments are
treated on different footings: We include a mutual inter-
action between SA and SB while we assume that only SB
interacts with R. This amounts to assuming that the
information contained in SA is first transferred to SB
and then damped into R, a clear example of indirect
information erasure. In practice we assume that between
the SB −Rn and SB −Rnþ1 collisions, the two subsystems
SA and SB interact. Equations (1) and (2) are still valid
provided that Û → ÛBÛAB, where ÛB (describing an
SB −Rn collision) is the same as in the last section, while
ÛAB ¼ e−iĤABτ regulates the joint evolution of the SA − SB
system. To go to continuous time, we expand each unitary
operator to lowest order in τ. Unlike the previous case, we
should now take ÛB ≃ I − igτV̂B − ðg2τ2=2ÞV̂2

B, as before,
and ÛAB ≃ I − iτĤAB. We thus find [22]

_ρ ¼ −i½JĤAB; ρ�
þ γ

X
kj

hR̂kR̂jiηth
�
ŜBjρŜBk − 1

2
fŜBkŜBj; ρg

�
: ð13Þ

This is a Lindblad ME describing the Markovian dynamics
of S. The dynamics of SA, however, is in general non-
Markovian.

We now illustrate the indirect-erasure model with a
specific example, where we set no constraint on the
dimension of the Hilbert space of SB. In Ref. [22], we
derive the form of Eq. (13) when SB is a quantum harmonic
oscillator resonantly coupled to a two-level subsystem SA
via the interaction Hamiltonian ĤAB¼ωðq̂2þp̂2þσ̂Az=2Þþ
Jðq̂σ̂Axþp̂σ̂AyÞ, with q̂ and p̂ the position and momentum
quadrature operators of oscillator SB, respectively. An
analogous model holds for the SB −Rn interaction, each
subenvironment being a qubit. The bosonic nature of SB
allows us to explore the effects that multiple excitations in
SB have on both the heat flow and rate of entropy change.
Indeed, as illustrated in Figs. 2(d) and 2(e), for an initially
thermal harmonic oscillator at the same temperature of
the bath, the differences with a finite-dimensional subsystem
SB are striking, and dependent on β. At low temperature,
due to the excitation-conserving nature of the Hamiltonian,
the dynamics of S is in fact identical to that of a
two-qubit system, as only one excitation at most can be
exchanged withR. This is not the case when the temperature
is raised, as excitations can be pumped into the harmonic
oscillator at each collision [cf. Fig. 2(e)]. In Ref. [22] we
study the behavior of the key quantities in our analysis
against J and γg. Interesting considerations on the nature of
the dynamics of SA are in order. Indeed, by tracing out
the degrees of freedom of SB, we obtain a non-Markovian
evolution due to the flowback of information into SA.
Correspondingly, Eq. (7) is violated very quickly, as shown
in Fig. 3, which again highlights the effects that the
establishment of intrasystem correlations have on the effi-
ciency of the information-to-energy conversion processes.

(a) (b) (c) (d) (e)

FIG. 2 (color online). (a) Sketch of the indirect-erasure protocol: The bipartite system S consists of subsystems SA and SB. After SB
interacts with the nth subenvironment (prepared in ηthn ), it collides with SA and is then directed to elementRnþ1. SB thus bridges the erasure
process undergone by SA, which experiences a non-Markovian evolution. (b)–(e): Total heat flow β _Q against the entropy change rate _~S for
qubit-qubit [(b),(c)] and qubit-harmonic oscillator [(d),(e)] configurations. We have set J=ω ¼ 0.1 and γg=ω ¼ 0.01, taking SB at the same
temperature of the environment, β ¼ 10 [(b),(d)] and β ¼ 0.5 [(c),(e)]. A study against the value of J and γg is reported in Ref. [22].

(a) (b)

FIG. 3 (color online). We plot β _QAðtÞ and _~SA for the qubit-
oscillator configuration in the indirect-erasure case. In panel
(a) [(b)] we have used β ¼ 10 (β ¼ 0.5) and the parameters stated
in Figs. 2(d) and 2(e).
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Similar conclusions hold when relaxing the key assumption
of noninteracting subenvironments. The breakdown of
such a condition would entail the establishment of memory
effects within the environment and the occurrence of
non-Markovianity in the SA − SB dynamics. The violation
of our formulation of Landauer’s principle could thus be
used to infer the nature of the bath itself.
Conclusions.—We have investigated the information-to-

energy conversion processes in terms of collision-based
models to describe the system-environment interaction,
with the aim to go towards the microscopic formulation of
Landauer’s principle. In our approach we focused on the
rate of entropy change and dissipated-heat flux involved
in the overall erasure process. By doing so, we have been
able to link the efficiency of the erasure process to the
intrasystem correlations arising in the open dynamics of a
multipartite system.
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