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Postselected weak measurement is a useful protocol for amplifying weak physical effects. However,
there has recently been controversy over whether it gives any advantage in precision. While it is now clear
that retaining failed postselections can yield more Fisher information than discarding them, the advantage
of postselection measurement itself still remains to be clarified. In this Letter, we address this problem by
studying two widely used estimation strategies: averaging measurement results, and maximum likelihood
estimation, respectively. For the first strategy, we find a surprising result that squeezed coherent states of the
pointer can give postselected weak measurements a higher signal-to-noise ratio than standard ones while
all standard coherent states cannot, which suggests that raising the precision of weak measurements by
postselection calls for the presence of “nonclassicality” in the pointer states. For the second strategy, we
show that the quantum Fisher information of postselected weak measurements is generally larger than that
of standard weak measurements, even without using the failed postselection events, but the gap can be
closed with a proper choice of system state.
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Introduction.—Postselectedweakmeasurement is a quan-
tum measurement protocol first invented by Aharonov,
Albert, and Vaidman in 1988 [1]. It involves weak coupling
between the system and the pointer, but the postselection on
the system leads to a surprisingly counterintuitive effect: the
average shift of the final pointer state can go far beyond the
eigenvalue spectrum of the system observable (multiplied by
the coupling constant) in sharp contrast to the projective
quantum measurement. The mechanism behind this effect
is the coherence between the pointer states translated by
different eigenvalues of the system observable, which has an
enlightening interpretation based on superoscillation [2].
Postselected weak measurement has aroused enormous

research interest in different fields, due to its ability to
amplify tiny physical effects. Thanks to technical progress
in recent years, the weak value has been measured in
experiments [3–6], and postselected weak measurements
have been applied to measuring small parameters in various
systems, including optical systems [7–23], atomic systems
[24], and NMR [25]. More experimental protocols have
also been proposed [26–38]. A general framework for
postselected weak measurement is given in [39], and
reviews of the field can be found in [40–42]. Of course,
weak value amplification cannot be arbitrarily large in
practice. The condition for the validity of the weak value
formalism was discussed in [43], and the limit of ampli-
fication has been studied in [44–47].
One of the major goals in postselected weak measure-

ment is to enhance the sensitivity of estimating small
parameters. The experiment of Starling et al. [9] and the
proposal of Feizpour et al. [27] showed that postselection
can significantly raise the signal-to-noise ratio (SNR) of
weak measurement. Nevertheless, some other work has led

to a negative conclusion [48]. In recent research, it was
shown that the failed postselections contain Fisher infor-
mation [49–51], and even the distribution probabilities
of postselection results can carry Fisher information [51];
thus, discarding postselection results will generally lead to
a loss of precision [52].
To address the issueof lowpostselectionefficiency,Dressel

et al. [33] and Lyons et al. [38] proposed recycling the
unpostselected photons to improve the precision. It was later
found [53–55] that the successful postselections can concen-
trate most of the Fisher information in the pointer, and the
Fisher information of postselected weak measurement can
approximately reach the Heisenberg limit [51,53–56]. More
surprising, weak value amplification can improve the pre-
cision in the presence of technical noise [27,53,55], and
technical noise may increase the SNR of postselected weak
measurement [57]. A review of the controversy over the
advantage of weak value amplification is given in [58].
The postselection in a weak measurement includes two

steps: first, measure the system, second, postselect the
measurement results. Most previous research focused on
whether failed postselections should be retained or not,
provided the system is measured. However, a more funda-
mental problem iswhether the system should bemeasured at
all in order to enhance the precision ofweakmeasurement. If
the measurement on the system could not give any advan-
tage, then it would becomemeaningless to studywhether the
failed postselections should be used or not. So, this question
lies at the heart of postselected weak measurement: what is
the significance of measuring the system in a weak meas-
urement compared to the standard weak measurement (i.e.,
without measuring the system)? Since postselecting and
nonpostselecting the results of measuring the system only
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lead to a negligible difference in the Fisher information
[54,55], wewill focus only on comparing postselected weak
measurement to the standard weak measurement.
At first glance, this question seems easy to answer:

since measuring the system with proper postselection can
amplify the signal, the SNR can then also be increased.
However, the efficiency of postselection is rather low,
which may cancel the benefits of the amplification effect
in the SNR, so the problem becomes subtle. In fact, the
numerical results in [59] showed that postselecting
the system with Gaussian pointer states cannot improve
the SNR compared with standard weak measurements, and
[60] found similar results for the Fisher information of
measuring the position or momentum of the pointer, with
the pointer states being real or Gaussian and the weak
values being real or imaginary, respectively.
However, it is important to note that those studies did

not optimize over the choice of the system and pointer
states, so they do not rule out the existence of other choices
that may allow postselected weak measurements to have
higher precision. In particular, the Gaussian states consid-
ered heretofore are quite “classical,” so it is of great interest
whether using more “quantum” states can bring any
advantage for precision. In fact, it has been shown that
nonclassical quantum states can be favorable to some other
weak measurement protocols, e.g., consecutive violations
of Clauser-Horne-Shimony-Holt (CHSH) inequalities [61].
Moreover, the measurement basis of the pointer was not
optimized either; hence, it is also possible to have the Fisher
information increased by measurements other than those
along the basis of position or momentum of the pointer.
Answering these questions will clarify the advantage of

postselection in weak measurements, and it is exactly the
aim of this Letter. We study the optimal precision of both
postselected and standard weak measurements for general
system and pointer states, and investigate when or whether
postselected weak measurements can have higher precision
than standard weak measurements. Moreover, different
estimation strategies may also influence the precision, so
we consider two principal estimation strategies: averaging
the measurement results of the pointer (AMR), and
maximum likelihood estimation (MLE), both of which
have been widely used in practice.
For the strategy of AMR, an interesting result we find

is that all standard (i.e., unsqueezed) coherent states do not
give weak measurements an improvement in SNR with
postselection, but properly squeezed coherent states do. This
suggests that, for weak value amplification to enhance the
precision, a necessary ingredient is some nonclassicality in
the initial pointer states which was missing from previous
studies. This result extends the understanding and feasibility
of postselected weak measurement in parameter estimation.
For the strategy of MLE, we obtain the optimum

quantum Fisher information and show that, even without
using the failed postselections, the quantum Fisher

information of postselected weak measurements is gener-
ally higher than that of standard weak measurements.
Weak value formalism.—First, we review the weak value

formalism for postselected weak measurement. Suppose
the initial state of the system is jΨii and the initial state of
the pointer is jDi. The interaction Hamiltonian between the
system and the pointer is

Hint ¼ gA ⊗ Ωδðt − t0Þ; ð1Þ
where the δ function indicates that the interaction is
instantaneous at time t0. Let ℏ ¼ 1. After the interaction
(1), the system is postselected to jΦfi, then the state of the
pointer collapses to jDfi ¼ hΦfj expð−igA ⊗ ΩÞjΦiijDi
(unnormalized). It can be derived that jDfi ≈ hΦfjΦiið1 −
igAwΩÞjDi when gAw ≪ 1, where Aw is the weak value,
defined as

Aw ¼ hΦfjAjΦii
hΦfjΦii

: ð2Þ

If one measures an observable M on the pointer state jDfi,
it can be obtained [62] that the average shift is

hΔMif ≈ gImAwðhfΩ;MgiD − 2hΩiDhMiDÞ
þ igReAwh½Ω;M�iD; ð3Þ

where hDj · jDi is denoted as h·iD for short. And the
success probability of postselection is Ps ≈ jhΦfjΦiij2.
The weak value (2) can be very large when hΦfjΦii ≪ 1,

and the dependence of hΔMif on Aw in Eq. (3) indicates
that the average shift can go beyond any eigenvalue of A in
this case. This is the origin of the weak value amplification.
Optimal signal-to-noise ratio.—First, we study the

precision of postselected weak measurement, then compare
it with that of standard weak measurement, to determine
when or whether postselection can assist weak measure-
ment in precision.
To quantify the precision of estimating the parameter g, a

widely used benchmark is the signal-to-noise ratio of the
estimates, defined as

SNRpost ¼
ffiffiffiffiffiffiffiffiffi
NPs

p hΔMifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMÞf

q ; ð4Þ

where N is the total number of measurements. The factorffiffiffiffiffi
Ps

p
, due to VarðMÞf, scales inversely with the number of

successful postselections. In the first order approximation
with respect to g, the spread of the pointer wave function is
almost unchanged, so VarðMÞf ≈ VarðMÞD.
Note that the quantity defined in Eq. (4) is the SNR of the

AMR estimator, not of the measurement results, and it is
directly related to the estimation precision of postselected
weak measurement [62].
With different pre- and postselections of the system,

the SNR is usually different, so a proper measure for the
precision of postselected weak measurement is the maxi-
mum SNR over all possible pre- and postselections. Direct
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maximization of the SNR by usual means (such as the
variation method) is rather difficult, since the variation of
SNRpost (4) produces a nonlinear equation that is not easy
to deal with.
However, the results of [54] offer an alternative possible

approach to this hard problem. In that Letter, the largest
success probability over all postselections of the system for
a given weak value Aw was shown to be

max
jΦfi

Ps ≈
VarðAÞi

hA2ii − 2hAiiReAw þ jAwj2
; ð5Þ

where h·ii is short for hΦij · jΦii. By exploiting this result,
the task of maximizing the SNR over all pre- and post-
selections can be simplified to maximizing over all weak
values Aw.
Usually, the weak value Aw is complex, and can be

denoted as Aw ¼ jAwje{θ, so we can follow a two-step
procedure to obtain the maximum of the SNRpost over Aw:
first, maximize SNRpost over jAwj, then maximize it over θ.
The mathematical detail of this optimization is left

for the Supplemental Material [62]. The result of the
maximized SNRpost turns out to be

gηðφÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
ðhfΩ;MgiD − 2hΩiDhMiDÞ2 þ jh½Ω;M�iDj2

VarðMÞD

s
;

ð6Þ
where φ ¼ arctanðih½Ω;M�iD=hfΩ;MgiD − 2hΩiDhMiDÞ
and ηðφÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðAÞi þ hAi2i sin2 φ

p
.

In [62], we also obtained an upper bound on the optimal
SNRpost based on (6).
When can SNR be increased?—The maximum SNR (6)

quantifies the metrological performance of postselected
weak measurement. To address the question of when
(or whether) postselection can improve the SNR of weak
measurement, we need to further compare (6) with the
maximum SNR of standard weak measurement.
Before proceeding with this question, it is helpful to note

that in the average shift of the pointer (3), the real part of the
weak value is assigned with the commutator between Ω;M
and the imaginary part with the covariance between Ω;M.
These coefficients can be quite large with proper pointer
states and will not be counterbalanced by the low post-
selection probability while the weak values may be. So it
opens the possibility of increasing the SNRby postselection.
In a standard weak measurement, the average shift in

the observable M on the postinteraction pointer state is
hΔMi ¼ {ghAiih½Ω;M�iD [62], and maxhAii ¼ λmaxðAÞ,
so the optimal SNR is

max SNRstd ¼ g

ffiffiffiffi
N

p jλmaxðAÞh½Ω;M�iDjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMÞD

p : ð7Þ

The ratio between the optimal SNR of postselected and
standard weak measurements is, therefore,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðAÞicsc2φþ hAi2i

p
jλmaxðAÞj

: ð8Þ

Obviously, since csc2φ ≥ 1, when jΦii → jλmaxðAÞi,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðAÞicsc2φþ hAi2i

p
≥ jλmaxðAÞj, and thus, s ≥ 1,

which means that postselection in weak measurement will
not reduce the SNR at least, but this is still not enough. The
key question is when (or whether) csc2 φ > 1 can hold, so
that postselection gives an increase of the SNR compared
with standard weak measurement.
To answer this question, wemove to Fock space. Suppose

thatΩ ¼ q;M ¼ p. Then ½Ω;M�D ¼ i. In Fock space, q and
p can be represented by q¼ðaþa†Þ= ffiffiffi

2
p

;p¼ða−a†Þ= ffiffiffi
2

p
i,

so fq; pg ¼ iða†2 − a2Þ, and csc2 φ ¼ 1þ jha†2i þ hai2D−
ha†i2D − ha2iDj2.
When the initial pointer state jDi is a standard coherent

state, csc2 φ ¼ 1, so standard coherent states cannot give
postselectedweakmeasurements any advantage in SNRover
standard weak measurements. This generalizes the results
of [59,60], and suggests that “classical” pointer states are
not able to improve the SNR of postselected weak
measurements.
An interesting question is whether introducing “non-

classicality” to the pointer state can “activate” the advan-
tage of postselected weak measurement in SNR. Consider
squeezed coherent states for the pointer. Suppose the initial
state jDi of the pointer is

jξ; αi ¼ exp
1

2
ðξ�a2 − ξa†2Þjαi; ð9Þ

where ξ is the squeeze parameter. Let ξ ¼ re{θ, then one can
find [62]

csc2φ ¼ 1þ 4ðsin θ sinh r cosh rÞ2: ð10Þ
It is clear from (10) that when sin θ ≠ 0, one can

acquire csc2 φ > 1 with a large r, so according to (8), if
VarðAÞi ≠ 0, the SNR of postselected weak measurements
exceeds that of standard weak measurements in this case.
This shows that nonclassicality really can assist the post-
selection to improve the SNR of weak measurements. It is
in a similar spirit to Ref. [27]: correlations, classical or
quantum, can increase the SNR of weak measurements.
To illustrate the above result, Fig. 1 plots the contours of

the ratio s on the complex plane of ξ for the squeezed
vacuum state jξ; 0i. Improvement of SNR can be explicitly
observed in the figure.
Why are squeezed coherent states more beneficial to the

SNR than standard coherent states? It can be roughly
understood from the following. The SNR of postselected
weak measurement can be shown to be bounded byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðΩÞD

p
[62], and the SNR of standard weak measure-

ment is proportional to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMÞD

p
[see Eq. (7)]. The

ratio between them is approximately
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðΩÞDVarðMÞD

p
.

Since coherent states have minimal uncertainty,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðΩÞDVarðMÞD

p
does not change and keeps the mini-

mum for conjugate quadratures Ω and M. In contrast,
squeezing can increase VarðΩÞD and decrease VarðMÞD,
so it can simultaneously increase the SNR of both
types of weak measurements. However, squeezed coherent
states no longer have the minimum uncertainty, soffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðΩÞDVarðMÞD

p
can be increased. Hence, the SNR

of postselected weak measurement can be raised more than
that of standard weak measurement.
It is worth noting that squeezing may also simultane-

ously decrease VarðΩÞD and increase VarðMÞD instead,
and the SNR of postselected weak measurement can still
be higher than that of standard weak measurement. But
in this case, the SNR of both types of weak measurements
are decreased, so it should be avoided in practice.
Optimal quantum Fisher information.—Next, we turn to

the precision of weak measurements using maximum
likelihood estimation strategy. Once again, our goal is to
determine whether postselected or standard weak meas-
urement has greater precision, and what conditions deter-
mine the advantage.
The exact variance of the MLE estimator is usually

difficult to obtain; however, Cramér and Rao [63] showed
that it is inversely bounded by the Fisher information, and
this bound can be saturated in the asymptotic limit. So we
will use Fisher information as the measure of precision for
MLE instead.

As different measurements on the pointer produce
different Fisher information, a proper benchmark for the
precision of MLE is the maximum Fisher information
over all possible measurements on the pointer, called the
quantum Fisher information [64,65], and it gives a more
general bound than that found by working in only one
specific measurement basis. For a pure g-dependent state
jψgi, the quantum Fisher information of estimating g
is FðQÞ ¼ 4ðh∂gψgj∂gψgi − jhψgj∂gψgij2Þ.
In a postselected weak measurement, the pointer state

after postselecting the system is jDfi ≈ e−igAwΩjDi, so
j∂gDfi ≈ −ðiAwΩþ hΩiDImAwÞjDi, and the quantum
Fisher information is approximately [62]

FðQÞ
post ≈ 4PsjAwj2VarðΩÞD; ð11Þ

where we note the dependence on the postselection
probability Ps. The maximum Ps is given by (5); therefore,
the maximum quantum Fisher information over all post-
selections given the weak value Aw is

FðQÞ
post ≈

4jAwj2VarðAÞiVarðΩÞD
hA2ii − 2hAiiReAw þ jAwj2

: ð12Þ

Now, the task is just to maximize FðQÞ
post over Aw. This

maximization can be achieved by a two-step procedure
similar to maximizing SNRpost [62], and the result is

maxFðQÞ
post ≈ 4hA2iiVarðΩÞD: ð13Þ

As a comparison, consider the standard weak measure-
ment. In this case, the postinteraction pointer state is
generally a mixed state since the pointer is entangled with
the system by the weak interaction. The quantum Fisher
information formixed states ismuchmore complex than that
for pure states, and a general analytical result is unavailable.
However, with the weak coupling limit gAw ≪ 1, this

difficulty can be significantly reduced, since the post-
interaction pointer state can be approximated to a pure
state jDfi ≈ e−ighAiiΩjDi [62]. Then, one can immediately
derive the quantum Fisher information for standard weak
measurement

FðQÞ
std ≈ 4hAi2iVarðΩÞD: ð14Þ

Now, comparing FðQÞ
std with FðQÞ

post, the ratio between them
can be obtained

FðQÞ
post

FðQÞ
std

≈
hA2ii
hAi2i

: ð15Þ

The result (15) compares the quantum Fisher informa-
tion between postselected and standard weak measure-
ments for every possible state of the system, in contrast to
Ref. [58,60] where the Fisher information of measuring the
pointer along the position or momentum basis was com-
pared between the two types of weak measurements for
their respective optimal system states (with additional
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FIG. 1 (color online). The contours of s are plotted for the
squeezed vacuum states jξ; 0i ¼ exp 1

2
ðξ�a2 − ξa†2Þj0i with

jξj ≤ 2 and j arg ξj ≤ π. The interaction Hamiltonian is gσz ⊗ q
with g ¼ 10−5. The weak value is fixed to 20i. The momentum p
is measured on the pointer after the postselection. Each point in
the figure represents a ξ on the complex plane, and the color
indicates the corresponding value of s, which is the ratio between
the SNR of postselected and standard weak measurements.
It clearly shows jsj can be much larger than 1 with proper ξ,
implying an increase in the SNR by postselecting the system.
The sign of s denotes the relative sign between the results of
postselected and standard weak measurements.
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assumptions as reviewed in the Introduction).
Equation (15) indicates that the initial state of the system
decides the ratio of quantum Fisher information, and
implies the postselected weak measurement generally
possesses more Fisher information than the standard weak
measurement, except that the latter can catch up when the
initial system is in an eigenstate of A.
References [49–51] made the comparison between using

and discarding failed postselections, given that the system
is measured. References [53–55] showed that the difference
between the Fisher information in these two cases can be
shrunk to be negligibly small. Combining (15) with those
results, if we denote the quantum Fisher information
retaining all failed postselections as FðQÞ

all , then

FðQÞ
all ≳ FðQÞ

post ≥ FðQÞ
std : ð16Þ

This clearly shows the relation of the quantum Fisher
information between different types of weak measure-
ments, and clarifies when the postselected weak measure-
ment has metrological advantage. The first inequality of
(16) reflects the results of [49–51,53–55], and the equality
sign of the second inequality accords with [58,60].
Remark.—The results for SNR and Fisher information, at

first glance, seem quite different: a significant advantage
can be given by postselected weak measurements over
standard weak measurements in SNR, while the advantage
is quite limited in Fisher information. The difference is
rooted in the performances of the two estimators behind
them, AMR andMLE, respectively. MLE has the minimum
variance over all estimators, while AMR does not, and
the Fisher information is usually an upper bound on the
precision of MLE (except for Gaussian distributions) which
can be achieved only asymptotically. Because of these
differences, the SNR has more room to be improved than
the Fisher information by optimizing the measurement
strategy and the initial states of the system and pointer.
These results indicate that the advantage of postselected
weak measurements has dependence on the choice of
estimation strategy.
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