Erratum: Optical Spectrum of MoS₂: Many-Body Effects and Diversity of Exciton States [Phys. Rev. Lett. 111, 216805 (2013)]

Diana Y. Qiu, Felipe H. da Jornada, and Steven G. Louie (Received 3 August 2015; published 9 September 2015)

DOI: 10.1103/PhysRevLett.115.119901

PACS numbers: 73.22.-f, 71.35.-y, 78.67.-n, 99.10.Cd

After further convergence tests, we find that finer k grids than the $12 \times 12 \times 1$ k grid for the dielectric matrix and the $72 \times 72 \times 1$ k grid for the BSE Hamiltonian reported in our Letter are required to converge the calculation. We have increased k-point sampling for the calculation of quasiparticle energies to $24 \times 24 \times 1$ and the calculation of the optical spectrum to $300 \times 300 \times 1$. We find that the quasiparticle gap decreases to 2.7 eV and the binding energy of the lowest excitation energy A exciton decreases to 0.65 eV. The main conclusions of our Letter—that MoS₂ has a large number of exciton states with large binding energies and the analysis of the character of these states—remain unchanged, but the oscillator strengths of excited states of the A and B excitons in the optical spectrum have decreased, resulting in better agreement with experiment for higher energy states. The $300 \times 300 \times 1$ sampling in our corrected calculation was achieved by explicitly calculating matrix elements on a $24 \times 24 \times 1$ k grid for all transitions in the Brillouin zone and a $300 \times 300 \times 1$ k grid for all transitions where the scattering momentum is less than 0.1 bohr⁻¹. These explicitly calculated

TABLE I. Values from different studies: optical transition energies for peaks A, B, A', B', and C, the binding energy of peak $A(E_b)$ and the convergence parameters—k-point sampling and number of valence (N_v) and conduction (N_c) bands. Low temperature experimental results were taken at 10 K [1] and 4 K [2].

	Optical transition energies (eV)						Convergence parameters		
	A	В	A'	B'	С	E_b	k grid	N_v	N_c
Present work $(G_0 W_0)$ at 0 K	2.04	2.17	2.32	2.45	2.73	0.63	$300 \times 300 \times 1$	4	4
Present work $(G_0 W_0)$ at 300 K	1.96	2.09	2.24	2.37	2.69	0.63	$300 \times 300 \times 1$	4	4
Absorp. exp. at low T	1.92-1.94 [1,2]	2.08 [1]							
Absorp. exp. at 300 K	1.88 [3]	2.03 [3]							
PL exp. at 300 K	1.85 [4]	1.98 [4]							
$G_0 W_0$ -BSE [5]	1.78	1.96				1.04	$6 \times 6 \times 1$	2	4
sc-GW-BSE [6] ^a	2.22	2.22	2.5	2.5		0.63	$15 \times 15 \times 1$	6	8

^aSpin orbit was not included in this calculation.

FIG. 1 (color online). (a) Absorption spectra of MoS_2 without (dashed red curve) and with (solid green curve) electron-hole interactions using a constant broadening of 25 meV. (b) Same calculated data as in (a) but using an *ab initio* broadening based on the electron-phonon interactions [7,8]. (c) Previous G_0W_0 plus BSE calculation (in arbitrary units) [5]. (d) Experimental absorbance [3].

matrix elements are interpolated to all points on a uniform $300 \times 300 \times 1 k$ grid. This fine sampling is necessary to capture fast variations in screening at small wave vectors and fine features in the exciton wave functions, which are tightly localized in k space.

We have summarized the corrected quantitative results in Table I, which replaces Table II on page 3 of our Letter. In the table, we have added the effect of lattice expansion due to temperature to draw a more accurate comparison with experimental measurements taken at room temperature, as noted by Soklaski *et al.* [2]. Figure 1 replaces Fig. 2 on page 3 of our Letter.

We thank Dr. Li Yang and Dr. Junichiro Kono for bringing the issue of temperature effects to our attention.

- [1] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nat. Mater. 12, 207 (2013).
- [2] R. Soklaski, Y. Liang, C. Zhang, H. Wang, F. Rana, and L. Yang, Appl. Phys. Lett. 104, 193110 (2014).
- [3] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
- [4] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
- [5] A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012).
- [6] H. Shi, H. Pan, Y.-W. Zhang, and B. I. Yakobson, Phys. Rev. B 87, 155304 (2013).
- [7] A. Marini, Phys. Rev. Lett. 101, 106405 (2008).
- [8] X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. Buongiorno Nardelli, and K. W. Kim, Phys. Rev. B 87, 115418 (2013).