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We combine experiments and theory to study the mechanics of overhand knots in slender elastic rods
under tension. The equilibrium shape of the knot is governed by an interplay between topology, friction,
and bending. We use precision model experiments to quantify the dependence of the mechanical response
of the knot as a function of the geometry of the self-contacting region, and for different topologies as
measured by their crossing number. An analytical model based on the nonlinear theory of thin elastic rods is
then developed to describe how the physical and topological parameters of the knot set the tensile force
required for equilibrium. Excellent agreement is found between theory and experiments for overhand knots
over a wide range of crossing numbers.
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Shoelaces are commonly tied using the reef knot, which
comprises two trefoil knots: the first is left handed and
the other right handed. Mistakenly tying two consecutive
left-handed trefoil knots leads to the mechanically inferior
granny knot [1], whose lower performance illustrates the
important interplay between topology and mechanics.
From polymer chains [2] to the shipping industry, knots
are ubiquitous across length scales [3]. Whereas they can
appear spontaneously [4] and are sometimes regarded
as a nuisance (e.g., in hair and during knitting), knots as
fasteners of filamentary structures have applications in
biophysics [5], surgery [6,7], fishing [8], sailing [9], and
climbing [10]. Frictional knots have also been added to
fibers for increased toughness [11].
Even if the quantitative study of knots has remained

primarily in the realm of pure mathematics [12], there have
been empirical attempts to characterize their mechanical
properties according to strength or robustness [13,14].
However, these metrics rely strongly on material-specific
properties and are therefore of limited applicability across
different systems and length scales [3]. Recent studies have
addressed the mechanics of knots from a more fundamental
perspective [15,16]. For example, existing theories on
flexible strings (with zero bending stiffness) [17,18] treat
friction using the capstan equation [19]. Finite element
simulations of knots have also been performed in instances
where bending cannot be neglected [20] and friction has
been treated perturbatively for trefoil knots tied in elastic
rods [21,22]. Still, predictively understanding the mechan-
ics of knots remains a challenging endeavor, even for the
simplest types of elastic knots, due to the complex coupling
of the various physical ingredients at play.
Here, we perform a systematic investigation of elastic

knots under tension and explore how their mechanical

response is influenced by topology. We perform precision
model experiments and rationalize the observed behavior
through an analysis based on Kirchhoff’s geometrically
nonlinear model for slender elastic rods. Our theory takes
into account regions of self-contact, where friction
dominates. Focus is given to open overhand knots
[Figs. 1(a)–1(d)]. These knots comprise a braid with arc
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FIG. 1 (color online). (a)–(d) Photographs of overhand knots
with different unknotting numbers n. A piece of rope (5 mm
diam) is used here for illustration purposes, although all the
experiments described in the text used Nitonol rods (see Fig. S2
in Ref. [23]). (e) Traction force vs end-to-end shortening for
overhand knots in Nitonol rods with radius h ¼ 0.127 mm and
1 ≤ n ≤ 10. (f) Normalized traction force FR2=B as a function of
unknotting number n at e ¼ f150; 500g mm [dashed and dotted
lines in (e)]. The horizontal solid line at 1=2 corresponds to the
frictionless case.
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length l, a loop with arc length λ, and two tails onto
which a tensile load is applied. The topology of the braid
is quantified by the unknotting number n ¼ ðχ − 1Þ=2
(number of times the knot must be passed through itself
to untie it), where χ is the crossing number (number of
apparent crossing nodes). In Fig. 1(e), we plot the traction
force F as a function of the end-to-end shortening, e (e ¼ 0
corresponds to a straight configuration, without a knot) for
a variety of knots in the range 1 ≤ n ≤ 10. We find that F
depends nonlinearly on e and varies significantly with n.
We shall provide an analytical solution for the relation
between the knot topology (defined by n) and the braid
geometry. We then extend our analysis to identify the
underlying physical ingredients and predictively capture
the experimental mechanical response.
Our experiments consisted of tying overhand knots

on Nitinol rods (662 mm long) of circular cross section
with radius h ¼ 0.127 mm density ρ ¼ 6450 kg=m3 and
Young’s modulus, E ¼ 67.50� 0.25 GPa. One extremity
of the rod was clamped. The other end was attached to the
load cell of a universal testing machine (Instron) and
displaced slowly to tighten the initially loose knot from
estart ¼ 531 mm, at a rate of ð−_eÞ ¼ 1 mm=s (such that
inertial effects are negligible). During the process we
recorded the resulting tensile force F, required to maintain
the equilibrium configuration; there are more details in the
Supplemental Material [23]. In Fig. 1(e), we present a
series of FðeÞ curves for knots with unknotting numbers
in the range 1 ≤ n ≤ 10, and find that the mechanical
response is dramatically affected by n. During these tests,
we also make use of digital imaging to record the braid
geometry and the shape of the loop.
In prior work, the mechanics of knots has been analyzed

using a string model with the assumptions of finite friction
but neglecting bending [17], using the capstan equation
[19]. These theories for “ideal knots” on a perfectly flexible
filament under tension predict the end-to-end shortening to
be e ¼ hfðnÞ, where the function f depends only on the
topology of the knot (e.g., see Ref. [18]). By contrast, in our
experiments, a string model is clearly inappropriate since
the bending stiffness B ¼ Eπh4=4 plays a key role in
setting the shape of the loop, such that e ≫ h. More subtly,
we shall show that the bending stiffness is also important
in the braid, where both strands adopt an approximately
helical configuration of radius h. The curvature of each
strand scales as ∼hk2, where k is its wave number, and
equilibrium under a tension F requires a normal force per
unit length ∼Fhk2 (arising from contact with the other
braid) that is correctly captured by the string model.
However, the bending rigidity neglected in the string model
leads to an additional contribution to the normal force per
unit length that can be shown to scale as ∼Bhk4, as our
analysis below will confirm. If the string model were to be
applicable, the first contribution would have to dominate
and the ratio F=ðBk2Þ would be large. In Fig. 2(d), we plot

this ratio for our experiments and find that it is always
lower than 1, thereby showing that the stiffness of the
filament must be accounted for [the rationale for 2πnhk on
the x axis of Fig. 2(d) is provided below].
Knots in stiff filaments have been previously analyzed

[21] but only in the perturbative limit of μ → 0 (and B ≠ 0).
This approach is also not applicable for our experiments
as the following dimensional analysis demonstrates. Each
strand in the braid is subject to three forces: (i) the traction
force F due to the tensile load exerted on the tails, (ii) the
pulling force B=ð2R2Þ applied by the elastic loop of radius
R [2,21], and (iii) the friction force resulting from self-
contact in the braid. In the absence of friction, the first two
forces balance each other and FR2=B ¼ 1=2. In Fig. 1(f),
we revisit the raw data for FðeÞ and plot the dimensionless
force FR2=B. For n ¼ 1, FR2=B ≈ 2, the same order of
magnitude as the value of 1=2 for the frictionless case
[horizontal solid line in Fig. 1(f)]. In this particular case of
trefoil knots, the weak friction assumption used by Ref. [21]
is acceptable. However, FR2=B ≫ 1=2 for all other higher-
order knots (n ≥ 2, which from now on we shall refer to as
long knots), indicating that friction is important and must
be taken into account, in full. Motivated by these findings,
and in contrast with prior work, we seek to develop a theory
to describe long knots that incorporates both the bending
rigidity B and the strong effect of friction μ.
A schematic diagram of the configuration of the braid

region for n > 1 is shown in Fig. 2(a). We shall use an
elastic curve model where twisting forces are ignored and
assume that the aspect ratio between the cross-sectional

FIG. 2 (color online). (a)–(b) Geometry of the braid. (a) The
two centerlines r1 and r2 effectively wrapped around a flexible
cylinder with diameter 2h. (b) The difference braid effectively
winds around a rigid cylinder, with both ends subjected to a
moment Q ∼ B=ð2RÞ. (c) Wavelength of the braid, l=n ¼ 2π=k,
as a function of

ffiffiffiffiffiffi
hR

p
. (d) Traction force F normalized by Bk2 as a

function of 2πhkn.
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radius of the rod h and the radius of curvature at the exit
from the braid towards the loop R is small, i.e., ϵ ¼ffiffiffiffiffiffiffiffiffi
h=R

p
≪ 1. This results in a separation of length scales

h ≪ ðl=nÞ ≪ R, such that the theory of slender rods is
applicable [23]. The braid can then be modeled by two
linear beams in mutual contact whose centerlines are
represented by r1ðzÞ and r2ðzÞ, with the z axis aligned
along the traction force.
We now consider the difference problem by focusing

on the relative position of the two strands: δðzÞ ¼
½r1ðzÞ − r2ðzÞ�=2þ zez, shown schematically in Fig. 2(b).
In the limit of ϵ → 0, δðzÞ can be determined through
asymptotic analysis of the braid by mapping the problem
to the winding of a linear beam around a rigid cylinder [21].
The nonpenetration condition implies δ2x þ δ2y ≥ h2, which
effectively represents a cylindrical obstacle with radius h.
Given the invariance ofδðzÞ by a rotation about they axiswith
angle π, we further simplify the analysis by only considering
the half-braid (z > 0). Far away from the braid, the curvatures
of the strands should match those in the tail and in the loop,
ðr001; r002Þ → ðey=R; 0Þ for z ≫ l=2, where the primes refer to
differentiation with respect to s. This yields δ00ðzÞ →
ey=ð2RÞ, meaning that in the difference problem a remote
bending moment −B=ð2RÞex needs to be applied.
The total energy of the braid can now be obtained by

doubling the energy of the half-braid:

Ebraid ¼ 2

�
B
2

Z
L

0

jδ00j2dz − B
2R

δ0ðLÞ · ey
�
: ð1Þ

This linear beam model can be derived from the nonlinear
Kirchhoff rod model in the limit h ≪ ðl=nÞ ≪ R (see
Ref. [22]): the first term is an elastic beam energy and
the second term arises from the moment that enforces the
asymptotic curvature 1=ð2RÞ far from the braid. The
integration in Eq. (1) is done over a segment of the rod
enclosing one half-braid, i.e., L > l=2, but the particular
choice of L does not affect the solution δ. The configuration
of the braid can then be determined by minimizing Eq. (1)
with respect to δ, subject to the nonpenetration constraint
δ2x þ δ2y ≥ h2, as well as the conditions that capture the
topology of the knot: φð0Þ ¼ −nπ and 0 ≤ φðLÞ ≤ π,
where φðzÞ is the polar angle of the projection of δðzÞ
in the perpendicular plane ðOxyÞ.
The above minimization problem with inequality con-

straints has previously been solved numerically for trefoil
and cinquefoil knots (n ¼ 1 and n ¼ 2) [21]. Our goal is to
now obtain an analytical solution that is applicable for long
knots. For n ≫ 1, we can ignore the inner layers present
near the end points of the braid z ¼ �l=2. In this limit, we
consider an approximation δðzÞ obtained by patching a
helix of radius h that winds n=2 turns around the z > 0
semiaxis (half-braid), together with a parabola in the ðOyzÞ
plane of the loop with curvature 1=ð2RÞ, as prescribed by
the end moment

δðzÞ ¼
8<
:

ðh cosφ; h sinφ; zÞ if 0 ≤ z ≤ l
2�

h;
�
z − l

2

��
khþ z−l

2

4R

�
; z
�

if l
2
≤ z ≤ L;

ð2Þ
where φ ¼ −nπ þ kz. The helical wave number k ¼
dφ=dz is a free parameter that is still to be determined,
from which the braid length can eventually be computed
as l ¼ 2nπ=k, implying φðl=2Þ ¼ 0. Note that this
approximation is kinematically admissible; it satisfies the
nonpenetration condition, it has the correct unknotting
number, and both the position δðzÞ and the tangent δ0ðzÞ
are continuous at z ¼ l=2. The 2D assumption in this
solution is in agreement with the nearly planar loop
observed in the experiments [23].
Inserting the approximation of Eq. (2) into Eq. (1) and

eliminating l in favor of k, we find an energy of the braid
Ebraid ¼ −ðBL=4R2Þ þ ðϵ3=hÞBnπĒðk̄Þ, where Ē ¼ k̄3 þ
ð1=4k̄Þ and k̄ ¼ kh=ϵ ¼ k

ffiffiffiffiffiffi
hR

p
. Terms of order 1=n have

been neglected in Ē. The optimal wave number k is found by
solving ∂kEbraid ¼ 0, which yields ∂ k̄Ē ¼ 0 and, conse-
quently, k̄ ¼ 1=

ffiffiffiffiffi
124

p
, or equivalently in physical variables,

k ¼ ð
ffiffiffiffiffi
12

p
ðhRÞÞ−1=2: ð3Þ

In Fig. 2(c), we compare the predicted wavelength
2π=k ¼ l=n ¼ 2π

ffiffiffiffiffi
124

p ffiffiffiffiffiffi
hR

p
against our experimental

data and find good agreement between the two, thereby
validating the analysis thus far. The total braid length
then reads l ¼ 2nπ=k ¼ 2wc

ffiffiffiffiffiffiffiffiffi
2hR

p
, where wcðnÞ ¼

πn=ð ffiffiffi
2

p
k̄Þ ¼ ffiffiffiffiffiffiffiffi

3πn4
p

in the large-n limit under consider-
ation. Extrapolating this formula to trefoil and cinquefoil
knots, even if not valid a priori since the assumption
of n ≫ 1 is violated, yields wcðn ¼ 1Þ ¼ 4.13 and
wcðn ¼ 2Þ ¼ 8.27. These values are within 20% and
10%, respectively, of the exact values of w�

cðn ¼ 1Þ ¼
3.51 and w�

cðn ¼ 2Þ ¼ 7.60, calculated by a numerical
solution that accounts for the boundary layers [21]. This
supports the appropriateness of the helical approximation
in Eq. (2), even for small n.
Having characterized the geometry of the braid, we

proceed by evaluating the scalar contact force P integrated
along the entire region of contact. Following a variational
approach, we consider a virtual increase, from h to hþ dh,
of the radius of the effective cylinder around which the
braid winds. The work done by the contact force is Pdh.
Since P appears to be the force conjugate to the cylinder
radius h, its equilibrium value can be calculated as P ¼
∂hEbraid ¼ Ēðk̄ÞBnπ=

ffiffiffiffiffiffiffiffiffiffiffi
4hR3

p
, with Ēðk̄Þ ¼ 4=123=4 ¼ 4k̄3

at equilibrium. This yields the contact pressure P ¼
2nπBhk3 for large n, which can be interpreted as the
product of the braid length l ¼ 2nπ=k with the lineic
density of contact force Bhk4 that is required to deform an
elastic curve into a helix with radius h and pitch 2π=k.
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Using Coulomb’s law of friction, the integrated contact
force P can now be connected to the traction force F
measured in the experiments. We further assume that the
braid remains nearly straight, and that the internal force in
the loop, ∼B=R2, is negligible compared to the traction
force F applied by the operator on the tails [supported by
our experimental data, since FR2=B≳ 20 for n ≥ 3; see
Fig. 1(f)]. Under these assumptions, the main contribution
to the traction force F arises primarily from friction. As
such, F ¼ μP, which after combining with the expression
for P derived above, yields

F
Bk2

¼ μ2πnhk: ð4Þ

In Fig. 2(d), we test this prediction against experiments by
plotting F=ðBk2Þ versus 2πnhk. All the data for knots with
different values of n collapse onto a linear master curve.
The slope is a measure of the dynamic friction coefficient,
μ ¼ 0.119� 0.001, obtained by fitting.
Thus far, we have found two equations, Eqs. (3) and (4),

for the three unknowns ðk; F; RÞ in terms of the parameters
ðn; B; h; μÞ. To close the system, we derive a third equation
by solving the nonlinear planar Elastica problem for the
shape of the loop and obtain its arc length λ (and,
consequently, also the end-to-end shortening, e ¼ λþ l)
as a function of both l and R. Owing to scale invariance,
this dependence is of the form l2=ðeRÞ ¼ gðl=RÞ, where
the function g is expressed in terms of elliptic integrals; see
Supplemental Material [23]. As a result of this analysis, we
obtain the aspect ratio of the width to the height of the loop,
a ¼ W=H, as a function of n2h=e. In Fig. 3, we juxtapose
this result (dashed line) on top of our experimental data for
all knots (1 ≤ n ≤ 10) and find good agreement. The slight
offset of 16% may be attributed to the fact that in the
experimental knots, the boundary condition at the exit point

from the braid into the loop is not exactly θð0Þ ¼ π [23]
when ϵ is small but nonzero.
Compiling the various results obtained above—namely,

R ¼ h=ϵ2, l ¼ 2nπ=k, l2 ¼ eRgðl=RÞ, as well as the
relation between k and F through Eqs. (3) and (4)—we
arrive at a complete solution for our knot problem:

n2
h
e
¼ 1

8
ffiffiffi
3

p
π2

g

��
96

ffiffiffi
3

p
π2

μ
·
n2Fh2

B

�1=3�
: ð5Þ

This expression captures the equilibrium of the loop
through the known nonlinear function g, and offers a
self-contained (albeit implicit) prediction for the force F
as a function of the end-to-end shortening e, which is the
control parameter. In Fig. 4, we compare this prediction to
our experimental results for knots with 1 ≤ n ≤ 10, using
the value μ ¼ 0.119 determined earlier. We find that all the
data collapse onto the master curve predicted by Eq. (5)
(dashed line) [23]. It is important to highlight that, even
though the analysis assumed n ≫ 1, the agreement is
excellent for n ≥ 2 (and reasonable for n ¼ 1).
This is the first time, to the best of our knowledge, that

precision model experiments and theory have been tied
together to untangle the influence of topology on the
mechanics of knots. Our predictive framework provides
concrete design guidelines for the choice of specific knot
topologies depending on targeted load bearing capacities.
This work could potentially be extended to obtain stress-
strain relations in the braid to provide failure criteria.
Beyond overhand knots, we believe that the formalism
we have developed may be built upon to study the
mechanics of more complex knot topologies and bundles,
where frictional interactions play a major role.

We are grateful for financial support from the National
Science Foundation (CMMI-1129894).
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FIG. 3 (color online). Aspect ratio of the loop a ¼ W=H as a
function of n2h=e. The dashed line (theory) was calculated by
solving the nonlinear planar Elastica problem of the loop [23].
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FIG. 4 (color online). When plotted using the dimensionless
variables suggested by the theory, the experimental traction
curves [from Fig. 1(e)] for knots in the range 1 ≤ n ≤ 10 collapse
onto a master curve predicted by Eq. (5) (dashed line).
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