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Living systems need to be highly responsive, and also to keep fluctuations low. These goals are
incompatible in equilibrium systems due to the fluctuation dissipation theorem (FDT). Here, we show that
biological sensory systems, driven far from equilibrium by free energy consumption, can reduce their
intrinsic fluctuations while maintaining high responsiveness. By developing a continuum theory of the E.
coli chemotaxis pathway, we demonstrate that adaptation can be understood as a nonequilibrium phase
transition controlled by free energy dissipation, and it is characterized by a breaking of the FDT. We show
that the maximum response at short time is enhanced by free energy dissipation. At the same time, the low
frequency fluctuations and the adaptation error decrease with the free energy dissipation algebraically and
exponentially, respectively.
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Living organisms need to respond to external signals
with high sensitivity, and at the same time, they also need to
control their internal fluctuations in the absence of signal.
In equilibrium systems, the fluctuation dissipation theorem
(FDT) dictates that these two desirable properties, high
sensitivity and low fluctuation, cannot be satisfied simul-
taneously. Most sensory and regulatory functions in biol-
ogy are carried out by biochemical networks that operate
out of equilibrium—metabolic energy is spent to drive the
dynamics of the network [1–4]. Thus, in principle, they are
not constrained by the FDT [5]. How fluctuations, energy
dissipation, and sensitivity are related for such systems
remains not well understood. Here, we address this ques-
tion by studying a negative feedback network responsible
for adaptation in the bacterial chemosensory system [6–9].
A typical adaptive behavior in a small system such as a

single cell is shown in Fig. 1(a) [10]. In response to a
change of the signal S, the output y of the sensory system
first changes quickly with a fast time scale τy. After the
fast response, the output slowly adapts back towards its
prestimulus level aad with an adaptation time τad ≫ τy.
The new steady state (adapted) output may differ from the
prestimulus value, and the difference is quantified by the
adaptation error ϵ. In our previous work [11], we showed
that the negative feedback network responsible for adapta-
tion operates out of equilibrium with a finite free energy
dissipation rate _W. The average adaptation error hϵi was
found to decrease exponentially with τad _W. However, how
the variance σ2ϵ of the error behaves in an adaptive system
still remains unknown. This is an important question as
adaptive feedback systems are intrinsically noisy due to the
slow adaptation dynamics [12].
In the linear response regime, the output response

of a system to an input signal SðtÞ is given by
RðtÞ ¼ Rð0Þ þ R

t
0 χðt − t0ÞSðt0Þdt0, where χ is the response

function. For equilibrium systems, under the general
assumption that response and signal are conjugate varia-
bles, the FDT establishes that χðtÞ ¼ −β∂tCRðtÞΘðtÞ,
where CRðtÞ≡ hRðtÞRð0Þi − hRi2 is the autocorrelation
function, ΘðtÞ is the Heaviside function, and β ¼ ðkBTÞ−1
is the inverse thermal energy set to unity hereafter. For a
small step stimulus SðtÞ ¼ S0ΘðtÞ, integration of the FDT
leads to a relation between the response and its correlation:
RðtÞ ¼ Rð0Þ − S0½CRðtÞ − CRð0Þ�. Since for systems in
chemical equilibrium CRðtÞ is a monotonically decreasing
function of time [13], the response RðtÞ is also monotonic
in time, and thus no adaptation dynamics is possible.
Furthermore, the long time response ΔR≡ Rðt ¼ ∞Þ −
Rð0Þ is linearly proportional to the variance σ2R ¼ CRð0Þ,
i.e., ΔR ¼ S0σ2R.
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FIG. 1 (color online). Noisy response of feedback adaptation.
(a) Adaptive output response to a step input signal increase at
time 0. After a sharp decrease in a time τy, the output y recovers
back in a time τad to its adapted value aad. The adaptation error is
characterized by its average hϵi, as well as its variance σϵ.
(b) Schematic of the feedback adaptation model. Transitions
between the active and inactive memory energy landscapes, f1
and f0, are mediated via equilibrium activity transitions with
rates ω0 and ω1. An external chemical energy input μ is used to
drive the memory variable uphill in both the active and inactive
states. The result is a dissipative loop of probability flow around
the adapted memory state mad, which ensures the output to be
near aad.
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In this Letter, we show that in a nonequilibrium adaptive
system both the average adaptation error hϵi (analogous to
ΔR) and its variance σ2ϵ (analogous to σ2R) are suppressed by
the free energy dissipation of the system but in different
ways, which results in a nonlinear (logarithmic) relation-
ship between them. More importantly, violation of the FDT
allows suppression of noise without compromising the
strength of the short time response.
The continuous model of feedback adaptation.—We start

by introducing a discrete adaptation model motivated by
the E. coli chemotaxis pathway. The system is character-
ized by its binary receptor activity A ¼ 0; 1, its output y,
and an internal control variable M ¼ 0; 1;…; N, that
corresponds to the chemoreceptor’s methylation level in
E. coli chemotaxis [9]. For a given external input signal S,
the free energy of the system can be written as

FAðM; SÞ ¼ −ðA − 1=2Þ½ðM −MrÞE − ðS − SrÞ�; ð1Þ

where Sr is a reference signal at a methylation level Mr,
and E (which is positive) sets the methylation energy scale.
For E. coli chemotaxis, the signal S depends on the ligand
attractant concentration logarithmically [14].
The dynamics of the system is characterized by the

transitions among the 2 × ðN þ 1Þ states in the A ×M
phase space. The receptor activity switches at a time scale
τa, which is much shorter than the adaptation time scale τad
at which the internal variable M is controlled. The activity
A determines the output y of the signaling pathway. In
the case of E. coli chemotaxis, this is carried out by the
phosphorylation and dephosphorylation reactions of the
response regulator CheYwith an intermediate time scale τy:
τad ≫ τy ≫ τa. To account for this, we express y by
yðtÞ ¼ τ−1y

R
t
−∞ eðt0−tÞ=τyAðt0Þdt0, which averages the fast

binary activity A over the time scale τy.
According to Eq. (1), a larger signal S favors the inactive

state A ¼ 0. Thus, an increase in S quickly reduces the
system’s average activity, at time scale ∼τa, and output, at
time scale ∼τy, as represented in Fig. 1(a). After this sudden
initial response, the system slowly adapts by adjusting its
internal variable M to balance the effect of the increased
signal. Because of its slow time scale, M effectively serves
as a memory of the system. This adaptation process restores
activity and output to a level near their prestimulus value
hAi ¼ hyi ≈ aad. Although highly precise, adaptation is
imperfect, and its inaccuracies are quantified by the
adaptation error ϵ, which we define as

ϵ ¼ y − aad
aad

: ð2Þ

For E. coli chemotaxis, the adaptive machinery consists of
chemical reactions that increase M in the inactive state and
decrease it in the active state. Note from Eq. (1) that such

regulatory reactions are energetically unfavorable, and thus
require a chemical driving force μ; see Fig. 1(b).
To gain analytical insights about dynamics and

energetics of adaptation, we consider the limit where
N → ∞ and m ¼ M=N ∈ ½0; 1� becomes a continuous
variable [15]. Note that free energy and bare rates need
to be rescaled for the continuum limit to converge (see
Supplemental Material [16] for details). Proceeding in this
way we obtain two coupled Fokker-Planck equations that
describe the chemotaxis pathway dynamics:

∂tp1 ¼ p0ω0 − p1ω1 − ∂mJ1;

∂tp0 ¼ p1ω1 − p0ω0 − ∂mJ0; ð3Þ

where p1ðm; tÞ and p0ðm; tÞ are the probabilities of m for
the active and inactive states, respectively. The probability
currents are given by

JA ¼ DAð−½∂mfA þ ðA − 1=2Þμ�pA − ∂mpAÞ; ð4Þ

for A ¼ 0; 1, and where fAðmÞ ¼ −ðA − 1=2Þ½ðm −
mrÞe − ðS − SrÞ� is the continuum limit of Eq. (1) charac-
terized by the rescaled energy parameter e ¼ NE. The fast
transition rates between the active and inactive states, ω0

and ω1, satisfy detailed balance ω0=ω1 ¼ expðf0 − f1Þ.
The diffusionlike constants D1 and D0 set the time scale of
m changes for active and inactive states, and thus the
adaptation time goes as τad ∼D−1

A and is independent of μ,
see Supplemental Material [16]. Our model is analogous to
that of an isothermal ratchet [17], where a chemical driving
fuels directed motion. Whereas in ratchets μ drives directed
motion, here it fuels currents up the energy landscapes f0
and f1 to achieve adaptation.
In the absence of external driving, i.e., μ ¼ 0, the system

relaxes to a state of thermal equilibrium with no phase-
space fluxes J0 ¼ J1 ¼ 0. In this regime adaptation is
impossible. The chemical driving μ > 0 breaks detailed
balance and creates currents that increase m in the inactive
state and decrease it in the active state. For large enough μ,
the memory variable m can be stabilized (trapped) in a
cycle around its adapted state mad, which ensures hyi ≈ aad
as illustrated in Fig. 1(b). The free energy dissipation rate
of this process, _W, can be computed, and is given by
_W ≈ Cjμj=τad, withC a system specific constant set to unity
by our parameter choice; see the Supplemental Material
[16]. In the following, we will use the chemical driving
μ ≈ τad _W to characterize the system’s energy dissipation.
The dynamics of A, y, and m are illustrated in Fig. 2(a).

The power spectra of A and y, given in Fig. 2(b), show that
the high frequency fluctuation of y is suppressed with
respect to that of A by time averaging. However, the low
frequency fluctuations of y, which are caused by the slow
fluctuations of m, are not affected. These slow fluctuations,
which can affect the bacterium’s swimming behavior due to
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the motor’s ultrasensitivity, are suppressed by free energy
dissipation, as we show later in this Letter.
Adaptation as a nonequilibrium phase transition.—

Given the separation of time scales τa ≪ τad, we can solve
Eqs. (3) by using the adiabatic approximation [13,18]:
p1ðmÞ ¼ aðmÞpðmÞ, and p0ðmÞ ¼ ½1 − aðmÞ�pðmÞ, with
aðmÞ ¼ ð1þ ef1ðmÞ−f0ðmÞÞ−1 the average equilibrated activ-
ity for a fixed value of m. The distribution of m can be
written as pðmÞ ¼ e−hðm;SÞ=Z with h the effective potential
and Z a normalization constant. We have determined
the effective potential h analytically (see Supplemental
Material [16]):

hðm; SÞ ¼ μ

μc
ln½D0e−ðm−m�Þe=2 þD1eðm−m�Þe=2�

− ln½e−ðm−m�Þe=2 þ eðm−m�Þe=2�; ð5Þ

where we have defined the critical chemical driving as
μc ¼ e=2, and m� ¼ mr þ ðS − SrÞ=e.

The analytical form of the effective potential is one of the
main results of this Letter. The effect of energy dissipation
and the onset of adaptation can be understood intuitively
with hðm; SÞ, which contains two terms with similar
shapes; see Fig. 2(c). The first term (proportional to
μ=μc) in the right-hand side of Eq. (5) comes from chemical
driving (nonequilibrium effect) and has a stable free energy
minimum. The second term is the equilibrium potential in
the absence of driving, and has a maximum at m�. At
equilibrium the only critical point m� is unstable, so the
system tends to go to the boundaries without adapting. As μ
increases and opposes the force generated by fA the first
part of the potential starts to dominate. For μ > μc, the
system develops a stable fixed point at mad indicating the
onset of adaptive behaviors towards aðmadÞ [19]. As μ
grows it dominates the slope of h near the fixed point
increasing its stability, and adaptation accuracy improves.
The transition of a feedback system to adaptation can thus
be loosely understood as a continuous phase transition (see
the Supplemental Material [16]). Since the control param-
eter is the free energy dissipation, the transition to adapta-
tion occurs far from equilibrium and a breaking of FDT is to
be expected.
Breakdown of fluctuation dissipation theorem.—In our

feedback model, the observable conjugate to the signal is
eA ¼ −∂SfA, something that does not hold for feedforward
models where the adaptive machinery can be maintained at
no energy cost [20–22]. At equilibrium the FDT leads then
to χðtÞ ¼ e∂tCAðtÞ, where χ is the activity response
function and CA the monotonic correlation function. In
an adaptive system the integral of χ, which is just the
response to a step stimulus, is nonmonotonic; therefore,
FDT is broken and adaptation occurs out of equilibrium.
To quantify the departure from equilibrium, we define an

effective temperature Teff using the formulation of the FDT
in frequency space [5,23]; see inset in Fig. 2(d). The
frequency dependence of Teff for μ > 0 implies a break-
down of FDT. As shown in Fig. 2(d), while for any value
μ ≠ 0 we have Teff ≠ 1, after the transition to the adaptive
regime μ ≥ μc a divergence occurs. This corresponds to the
appearance of a frequency region where Im½χðωÞ� < 0. A
negative effective viscosity indicates the dominance of the
active effects that drive a net current to flow against the
gradients of the equilibrium energy landscapes (fA), which
was also observed in other biological systems such as
collections of motors [24] or the inner ear hair bundle [5].
The breakdown of FDT means that there is no a priori
connection among fluctuations σ2ϵ , chemical driving μ
(dissipation), and long-time response hϵi. In the following
we derive relations linking these three quantities in the
adaptive feedback system studied here.
The free energy cost of suppressing fluctuations.—As

evident from the effective potential, increasing the chemical
driving μ stabilizes the adapted state. In the limit μ → ∞,
the system thus goes to its perfectly adapted state with

(c)
(d)

(a)

time

time

10-1

10-2

10-3

10-4

10-5

10-6

10-1 100 101 102 103 104

frequency     (s-1)

po
w

er
 s

pe
ct

ru
m

Output noise Activity noise

(b)

frequency     (s-1)

1

2

10-1 100 101 102 103

3

step response

ef
fe

ct
iv

e 
po

te
nt

ia
l

10
memory, m

0

-1

activity, A
output, y

0

N

0

1

memory, M

FIG. 2 (color online). Adaptation as a nonequilibrium transi-
tion. (a) Schematic time traces of the binary activity A (blue), the
output y (black), and the memory M (red) in steady state. The
slowM variations induce large fluctuations in the output y, while
the fast A switching for a fixed M only produces small fluctua-
tions in y. (b) Power spectra of the activity SA and output Sy. The
output noise is filtered (reduced) in the high frequency range
τ−1y < ω < τ−1a , but it remains unfiltered in the range
τ−1ad < ω < τ−1y . (c) Effective memory potential in Eq. (5) for
three values of the chemical driving μ (due to the choiceD1 ¼ D0

taken here, mad ¼ m�). At equilibrium, μ ¼ 0, the adapted
memory state mad is unstable. At the value μ ¼ μc the system
becomes critical. In the region μ > μc the adapted state mad is
stable, and the system adapts output and activity to aðmadÞ. Inset:
Activity response to step signal increase for corresponding values
of μ. (d) Effective temperature Teff for three different values of the
chemical driving μ. After the onset of adaptation a region with
“negative friction” develops, at the end of which the effective
temperature diverges. Values of μ from lighter to darker blue are
μ ¼ 0, μ ¼ 0.65μc, and μ ¼ 20μc [the same as in panel (c)]. The
other parameters are from Ref. [18]; see the Supplemental
Material [16].
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average activity and output aad ¼ D0=ðD0 þD1Þ, that is
aðmadÞ → aad. For finite μ, the output differs from aad,
which can be characterized by the average error hϵi and its
variance σ2ϵ .
The average adaptation error is hϵi ¼ ðhyi − aadÞ=aad.

Summing and integrating Eqs. (3) at the steady state, we
have

hϵi ¼ D1p1ð1Þ þD0p0ð1Þ
D0ðe=2 − μÞ −

D1p1ð0Þ þD0p0ð0Þ
D0ðe=2 − μÞ : ð6Þ

Thus to obtain the adaptation error we only need to evaluate
the probability at the boundaries. In the limit of μ ≫ μc,
we have

hϵi ≈ ϵce−kμμc ; ð7Þ

where k and ϵc are constants with only weak dependence
on μ and S (see Supplemental Material [16]). This shows
explicitly that the adaptation error goes down exponentially
with energy dissipation, as found numerically in our
previous work for the discrete model [11]. Here, we show
this relationship analytically in the continuum limit, which
is consistent with direct simulations of the discrete model;
see Fig. 3(a).
Besides stabilizing the adapted state, Eq. (5) shows that

increasing μ also reduces the m fluctuations by making the
effective potential sharper. The reduction in these fluctua-
tions implies a decrease in the variance of the error σ2ϵ.
Taking into account the separation of time scales, the
variance of the output y can be approximated as the sum of
two variances σ2ym and σ2a. They, respectively, correspond to
variation of y at time scale ∼τy around its average aðmÞ for
a fixedm, and the variation of aðmÞ due to variation ofm at
the adaptation time ∼τad; see Fig. 2(a). We thus have

σ2ϵ ≈ ðσ2ym þ σ2aÞ=a2ad: ð8Þ

The variance σ2ym of y is caused by the fast fluctuations
of the binary variable A at time scale ∼τa averaged over
the output time scale τy ≫ τa (see Supplemental Material
[16]):

σ2ym ¼ ðaad − a2adÞτa=ðτy þ τaÞ;

which clearly shows that σ2ym ∝ τa=τy is reduced by time
averaging [12,25].
The variance σ2a ¼ ha2i − hai2, where hani ¼R

1
0 anðmÞpðmÞdm for n ¼ 1; 2, is caused by the slow
variation of m, and cannot be reduced by time average.
To obtain an analytical expression for σ2a we approximate
pðmÞ by a Gaussian, valid for μ ≫ μc. This results in
σ2a ≈ ð∂maadÞ2σ2m. The variance σ2m ¼ hm2i − hmi2 within
the same Gaussian approximation of pðmÞ is given by
σ2m ≈ ðμμcÞ−1. Defining now a characteristic variance as
σ2c ¼ ð1 − aadÞ2a2ad, we finally have

σ2a ≈ σ2cμc=μ; ð9Þ

which vanishes when μ → ∞. This is a main result of the
Letter, which shows that energy dissipation is used to
reduce error noise by suppressing slow activity fluctua-
tions. This result is verified by direct simulations of the
discrete models with increasing N; see Fig. 3(b).
Discussion.—Biochemical networks are nonequilibrium

systems fueled by free energy dissipation to achieve their
biological functions. Energy dissipation liberates the net-
works from constraints such as the fluctuation dissipation
theorem and detailed balance. Here, we show in a negative
feedback network that the long-time output response
Δhyi ¼ aadhϵi decreases with the free energy dissipation
μ ≈ τad _W exponentially, and its fluctuation σ2y ¼ a2adσ

2
ϵ

decreases as μ−1, making the latter a limiting factor for
accuracy at large μ. These effects, which arise from an
improved accuracy and smaller fluctuations of the adapta-
tion dynamics, contribute to enhance the short time
response hyimax; see Fig. 4.
Even though FDT is broken in the adaptive

system studied here, fluctuations and long-time response
of the output are linked via a nonlinear relation: σ2y ≈
dμ2c= lnðyc=ΔhyiÞ þ σ2ym, where d ¼ kσ2c and yc ¼ aadϵc.
Unlike the linear nonequilibrium FDT derived by a change
of observables [26–28], our nonlinear relation links observ-
ables that are conjugate at equilibrium, making it particu-
larly appealing. Our work is closely related to the bound
derived in Ref. [29] for fluctuations of currents and in
Ref. [30] for reduction in concentration estimates. We
expect that the results here shown are generically appli-
cable to feedback adaptive systems. And, while there is
evidence that their scope could be broader [31], it remains a
challenging question to formulate a general relationship
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FIG. 3 (color online). Free energy cost of reducing error and
noise. (a) Dependence of average error with chemical driving for
several system sizes. The decay is exponential, in agreement with
the infinite size limit (dashed red). Saturation of the decay for
finite N is due to finite size effects. (b) Adaptation noise as a
function of chemical driving for several system sizes, together
with the analytical estimate in dashed red. At very large driving
the noise saturates to its minimum σym dictated by the intrinsic
activity fluctuations. Note that at the critical driving μc the
analytical estimate diverges. This divergence is smoothed for
finite N.
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among response, fluctuations, and energy dissipation for
systems far from equilibrium.
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FIG. 4 (color online). Response and correlations in systems out
of equilibrium. (a) (top panel) Average output response to a signal
decrease for several values of the chemical driving beyond μc, see
the color code for μ in panel (b). As the chemical driving μ
increases, the maximal transient response hyimax increases, but
the long time response Δhyi ¼ aadhϵi decreases. (bottom panel)
The correlation function also decreases as the system is driven
further away from equilibrium. (b) The dependence of hyimax,
Δhyi, and σy on the chemical driving μ. The long-time response
(adaptation error) Δhyi decreases quickly with μ. The output
fluctuation σy, dominated by the memory noise σm, decays more
gradually with μ, and controls the increase in the maximal
response hyimax for large μ. In this figure N ¼ 15, and S ¼ Sr.
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