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Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal
are experimentally measured through high-resolution Compton scattering and theoretically modeled with
ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for
thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K,
with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron
radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by
oscillations extending almost up to |p| = 4 a.u., which perfectly match those predicted from quantum-
mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-
Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are
adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely
account for the effect of temperature on the electron momentum density within the experimental accuracy.
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The electron momentum density (EMD) z(p) of a
material embodies valuable chemical and physical details
on its electronic ground state, which are complementary to
those accessible through the analysis of the electron charge
density (ECD) p(r) [1]. In this respect, high-resolution
Compton scattering has proven to constitute an effective
technique for probing the electronic structure of solids and
liquids [2-4]. In recent years, merits and limitations of
several quantum-mechanical methods have been assessed
by comparing their predictions with accurate experimental
Compton profiles (CP): (i) on the one hand, wave-function-
based methods, such as the reference Hartree-Fock (HF)
and the perturbative MP2 (explicitly accounting for elec-
tron-electron dynamic correlation) ones, were found to
satisfactorily describe most features of the EMD; (ii) on the
other hand, the popular Kohn-Sham formulation of the
density functional theory (DFT) has shown definite dis-
crepancies with the experiment, systematically overesti-
mating the anisotropy of the EMD, which can be traced
back to its fundamental inability in satisfying the so-called
virial theorem, —2(7) = (V) (which in the HF method
guarantees the balance between potential (V) and kinetic
(T) contributions to the total energy of the system), by
underestimating the kinetic energy [5—10].

Temperature affects the electron distribution quite differ-
ently in position and momentum spaces [11]. As electrons
do follow the respective nuclei almost instantaneously,
thermal effects on the ECD must be explicitly taken into
account, even at room temperature [12]. Thermal effects on
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the EMD, on the contrary, are much subtler; for this reason
they have been systematically neglected in most theoretical
models (see below for a discussion of the few exceptions in
this respect) and, more generally, have been overlooked for
a long time. In recent years, however, the enhanced
accuracy of modern synchrotron radiation-based
Compton scattering measurements has allowed for unam-
biguously detecting such fine effects. Among other inves-
tigations, Compton scattering has thus been fruitfully
applied to unveil the temperature dependence of the
configurational enthalpy in ice, spin, and magnetic
moments of several crystals and shape memory alloys,
the electron localization state in CeRu,Si, below and above
the Kondo temperature, etc. [13—19].

From a theoretical point of view, as thermal effects on the
EMD of solids are tiny, rather sophisticated computational
approaches combined with a high numerical accuracy are
required in order to reveal them with general ab initio
methods. The only ab initio study ever attempted in this
respect dates back to 1998 when Dugdale and Jarlborg
reported a pioneering DFT study of thermal disorder effects
on the CP of Li and Na [20]. By keeping the lattice cell
fixed (i.e., without accounting for lattice thermal expan-
sion), they computed a Boltzmann statistical average over
atomic configurations as obtained through a Gaussian
distribution along harmonic phonon modes and reported
a large thermal effect, which resulted in a broadening of the
CP with increasing temperature. Three high-accuracy
Compton scattering experiments were performed later
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and were unable to confirm this picture and measured an
opposite effect: a narrowing of the CP upon heating
[21-23]. In particular, Sternemann and co-workers, by
means of empirical temperature-dependent local pseudo-
potential computations, suggested lattice expansion (i.e.,
the Fermi momentum pr change with temperature) to be
the dominant effect on the thermal response of the EMD of
several simple metals for |p| < |pr|. In the case of lithium,
where higher momentum components (HMC) to the
valence EMD of the system show a nonzero dependence
on temperature, the need for an explicit treatment of
thermal disorder (by means of Debye-Waller factors, for
instance) was invoked for |p| > |pp| [22-24].

In this Letter, we report the results of a fully ab initio
anharmonic theoretical investigation of anisotropic thermal
effects on the EMD of solids, by explicitly taking into
account lattice thermal expansion. The EMD of the simple
LiF single crystal is found to be affected by temperature
according to a rather complex pattern, which manifests
itself in regular oscillations of directional CPs (extending
well beyond the Fermi momentum, with HMC contribu-
tions up to about |p| = 4 a.u.). Highly accurate directional
CPs of LiF are measured at 10 and 300 K, which show
thermal oscillations that perfectly match the predicted ones.
Different quantum-chemical methods are used (the wave-
function-based HF one and several formulations of the
DFT), which, despite providing slightly different descrip-
tions of the EMD anisotropy and of the equilibrium volume
of LiF, all remarkably result in a coherent description of
thermal effects on the EMD.

High-resolution directional CPs have been measured
at the BLO8W beam line at the SPring-8 synchrotron-
radiation center in Japan. The sample is a single crystal of
LiF with a flat surface normal to the [100] direction. The
energy of the incident x-ray beams is 115 keV and the
scattering angle of 165 degrees. The momentum resolution
is 0.10 a.u. The Compton profiles were corrected for
absorption, analyzer, and detector efficiencies, scattering
cross section, possible double scattering contributions, and
x-ray background. All calculations have been performed
with the CRYSTAL14 program [25], with atom-centered
Gaussian-type function basis sets of TZVP (for DFT)
and DZVP (for HF) quality [26]. Phonon frequencies have
been computed at 7 volumes on a supercell containing 16
atoms. CPs have been computed as Fourier transforms of
the autocorrelation function B(r), as convoluted for the
experimental resolution function. The T1 tolerance for the
truncation of infinite lattice sums is set to a tight value of 20
to ensure the nodal condition of B(r) [8].

Before considering thermal effects on the EMD of LiF,
let us briefly illustrate how different quantum-mechanical
methods perform in the description of the EMD anisotropy
of the system, which was first experimentally determined
by Reed and co-workers [27,28] using y rays, and by
Loupias and Petiau [29] using synchrotron radiation. The

valence directional CP Joy(p) is shown in the upper panel
of Fig. 1, while the three lower panels report the three main
directional CP anisotropies [given as a percentage of
J100(0)] of LiF. Along with the experimental determina-
tions, four theoretical predictions are reported as obtained
with the HF method and with three functionals that
correspond to three distinct rungs of the well-known
“Jacob’s ladder” [30]: a local density approximation one
(LDA), a generalized gradient approximation one (PBEsol)
and a hybrid one (PBEO), which incorporates 25% of the
exact HF exchange into its exchange-correlation potential.
All methods nicely reproduce the overall features of the
EMD anisotropy in terms of position and amplitude of
the oscillations, describing the [100]-[111] anisotropy as
the largest and the [110]-[111] as the smallest. It has to be
noticed that all DFT-based methods do systematically
slightly overestimate the amplitude of the oscillations, thus
describing a larger EMD anisotropy. The overall descrip-
tion provided by the reference HF method (that, by
definition, neglects the whole electron-electron correlation)
turns out to be the most satisfactory (particularly so for
the subtle [110]-[111] anisotropy), thus confirming the
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FIG. 1 (color online). (Upper panel) valence Jy(p) CP and
(lower panels) CP anisotropies of single-crystal LiF, as measured

(red circles with error bars) and computed (lines) with different
quantum-mechanical methods.
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importance of satisfying the above-mentioned virial theo-
rem (the —2(T)/(V) ratio, that would be 1 in an exact
calculation, being 0.999 for HF, 1.055 for LDA, 1.059 for
PBEsol, and 1.044 for PBEQ).

Within the harmonic approximation to the lattice poten-
tial, a variety of solid state thermal properties would be
incorrectly described; among others, thermal expansion
would be null, elastic constants and bulk modulus would
not depend on temperature, thermal conductivity would be
infinite as well as phonon lifetimes, etc. [31,32]. A
relatively simple, though effective, approach for correcting
most of these deficiencies is represented by the so-called
quasiharmonic approximation (QHA) [33—-35] according to
which, the Helmholtz free energy of a crystal is written
retaining the same harmonic expression but introducing an
explicit dependence of vibration frequencies on volume:

F(T.V) = Up(V) + kBTkZ {m (1 - e‘mﬁ‘é’r(v)ﬂ, (1)

where kp is Boltzmann’s constant, Uy(V) is the zero-
temperature internal energy of the crystal, which includes
the zero-point energy of the system: EZP(V)=
> xphwy,(V)/2, and the sum runs over phonons
within the first Brillouin zone in reciprocal space. The
volumetric thermal expansion coefficient, ay(T) =1/
V(T)[OV(T)/OT], can then be derived by minimizing
Eq. (1) with respect to the volume at each temperature.
As LiF is a cubic crystal, the linear thermal expansion
coefficient is simply a, = ay,/3. Within the QHA, in order
to describe the thermal expansion, just the volume depend-
ence of the lattice free energy of Eq. (1) has to be properly
converged; a 2 x 2 x 2 sampling of the phonon dispersion
in the first Brillouin zone of LiF turns out to provide fully
converged results, which are shown in Fig. 2. In the upper
panel, the lattice parameter a is reported as a function of
temperature, as computed with the four different methods
and compared with experimental determinations: (i) the
different quantum-mechanical schemes provide rather dif-
ferent absolute values of a (with differences as large as
2.3% among them); (ii)) LDA and HF give the closest
descriptions to the experiment; (iii) PBEsol and PBEOQ
overestimate the lattice parameter by almost the same
amount.

Despite the different description of the absolute value of
a, all methods do provide a satisfactory description of its
thermal dependence up to room temperature (this being the
most important aspect for the correct description of thermal
effects on the EMD, as shown below) with slight
differences among them. In order to highlight such
differences, we report the linear thermal expansion coef-
ficient a, of LiF in the lower panel of Fig. 2. As expected
from previous investigations [34,35,38,39], the LDA
scheme underestimates the thermal expansion. The refer-
ence HF method overestimates a, whereas the two schemes
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FIG. 2 (color online). Lattice parameter a (upper panel) and
linear thermal expansion coefficient @, (lower panel) of LiF, as a
function of temperature. Experimental data are from
Refs. [36,37].

(PBEsol and PBEQ) that provide the poorest description of
the absolute value of a, are found to perfectly predict the
thermal expansion of the system.

As the integral of a directional CP J(p) along the whole
electron momentum axis p is normalized to the number of
electrons per cell, it is expected that temperature would
manifest itself in regular and damped oscillations of J(p).
In the upper panel of Fig. 3, we report our experimentally
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FIG. 3 (color online). Difference of the J;,o(p) valence CP of
LiF between 300 and 10 K [given as percentage of J,¢(0)]. In the
upper panel, computed PBEsol values (thick line) are compared
with measured ones (symbols with error bars); the thin line
corresponds to the PBEsol computed difference between 300 and
0 K, without including ZPM effects. In the lower panel,
predictions from different theoretical methods are compared.
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measured difference of the directional J;,o(p) CP of LiF
between 300 and 10 K, which shows clear oscillations
almost up to |p| = 4 a.u. Previous high-resolution exper-
imental measurements of thermal effects on CPs revealed
such oscillations on simple metals: empirical calculations
supported the picture according to which the large oscil-
lations at small momenta, |p| < |pr|, were mainly due to
thermal expansion while the small oscillations at higher
momenta (when detected) to thermal disorder [22-24].
Along with experimental measurements, the upper panel of
Fig. 3 also reports the computed thermal effect on J;4(p),
as obtained by taking into account the thermal expansion of
the lattice, with the PBEsol method including zero-point
motion (thick line). The agreement with the experimental
determinations is extremely remarkable (in terms of posi-
tion and amplitude of the oscillations), both at low and high
momenta, and it demonstrates that an accurate ab initio
description of lattice thermal expansion can account for the
whole thermal effect on the EMD of LiF, within the
experimental accuracy. A couple of further considerations:
(i) the effect of an increasing temperature is clearly that of
narrowing the CP; (ii) zero-point motion (ZPM), often
neglected in most computational studies, has a large effect
and must be explicitly considered in order to predict the
correct amplitude of thermal oscillations on the EMD (see
thin line in the upper panel of the figure); (iii) different
quantum-mechanical methods do provide a rather similar
and homogeneous description of thermal effects on the
EMD of the system (see the lower panel of the figure),
suggesting that such thermal effects are dominated by the
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FIG. 4 (color online). 2D maps of the valence EMD of LiF in
the (100) and (110) planes and the two corresponding thermal
differences between 300 and 10 K, as computed with the PBEO
hybrid functional. High-symmetry directions are marked.

description of thermal expansion, rather than by the agree-
ment with absolute values of the equilibrium volume at
different temperatures.

A deeper insight on how thermal lattice expansion is
affecting the electronic properties of LiF in momentum
space can be achieved by directly looking at the computed
EMD =z(p) [40]. In Fig. 4, we report the PBEO valence
EMD of the system as mapped in the (100) and (110)
planes (upper panels), along with the two corresponding
thermal differences between 300 and 10 K (lower panels).
Temperature is seen to affect the EMD according to rather
complex and definitely anisotropic patterns, which show a
region at small momenta, |p| < |pp|, where the EMD
overall increases and another region at higher momenta,
|p| ~|1.3] a.u., where it decreases. Above |p| = 1.5 a.u.,
the EMD of LiF appears to be scarcely affected by
temperature.

To summarize, in this Letter we have shown how
anharmonic thermal effects on the EMD of solids can
reliably and quantitatively be predicted by highly accurate
ab initio quantum-mechanical simulations, accounting for
thermal expansion effects. Thermal oscillations of CPs of
LiF, as measured by high-resolution Compton scattering,
are nicely reproduced by the theory both at low and high
momenta.
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