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We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional
Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter
regime in density, interaction, and second-nearest-neighbor hopping strength that maximizes the dx2−y2
superconducting transition temperature. We find in all cases that the optimal transition temperature occurs
at intermediate coupling strength, and is suppressed at strong and weak interaction strengths. Similarly,
superconducting fluctuations are strongest at intermediate doping and suppressed towards large doping and
half filling. We find a change in sign of the vertex contributions to dxy superconductivity from repulsive
near half filling to attractive at large doping. p-wave superconductivity is not found at the parameters we
study, and s-wave contributions are always repulsive. For negative second-nearest-neighbor hopping the
optimal transition temperature shifts towards the electron-doped side in opposition to the van Hove
singularity, which moves towards hole doping. We surmise that an increase of the local interaction of the
electron-doped compounds would increase Tc.
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Understanding physical scenarios that give rise to super-
conductivity at high temperatures has been a primary
motivating force behind computational research of strongly
correlated electron systems and candidate models such as
the 2D Hubbard model [1,2]. Only recently have reliable
many-body methods [3] become powerful enough to reach
temperatures low enough to cross the superconducting
transition at intermediate interaction strengths [4–6], but
progress is limited by the exponential scaling intrinsic to all
unbiased methods. Such computational work has identified
clearly the competition between correlations that give rise
to superconductivity and other phases such as antiferro-
magnetism [7,8] and the pseudogap [5,6] phenomenon
within the 2D Hubbard model.
Central to understanding these phases is the evaluation of

two-particle susceptibilities and vertex functions at nonzero
temperature, which diverge on approach to a continuous
phase transition and may also exhibit signs of a transition at
temperatures much larger than the transition temperature,
for parameters that are accessible with current techniques
and computational power. Nevertheless, the numerical
calculation of these two-particle susceptibilities requires
techniques that are robust across the full phase diagram, can
reach low temperatures, are capable of providing reliable
and systematically improvable results, and are able to
distinguish independent phases. Cluster dynamical mean
field theory [9–13] provides such a self-consistent non-
perturbative tool for simulating strongly correlated electron
problems. The dynamical cluster approximation (DCA) is
based on a self-energy discretization into Nc independent
self-energy coefficients which recover the exact limit as
Nc → ∞ [3,14–16] and capture much of the physics

believed to be relevant for the superconductivity and
pseudogap physics two-dimensional Hubbard model on
clusters of size 8 and larger [5,6].
In this work, we specifically address the problem of

optimizing the superconducting transition temperature in
the 2D Hubbard model by analyzing wide regions of
parameter space. We first demonstrate how the vertex
contribution to the pairing susceptibility can be used as
an indicator of the proximity to the superconducting
transition temperature Tc. We then show that this quantity,
as temperature is reduced, mimics the dependence of Tc on
model parameters. This allows us to sweep the entirety of
parameter space in density n, interaction strength U=t, and
second-nearest-neighbor hopping t0=t at numerically acces-
sible T ∼ 2Tc, to identify regions of qualitatively high or
low Tc, so that the maxima can then be targeted for a
quantitative determination of the optimal Tc value. We
focus on dx2−y2 superconductivity but will also show the
behavior of dxy superconducting fluctuations which change
from attractive (at large doping) to repulsive (at low
doping). We also find that p-wave fluctuations are always
either repulsive or zero within error bars at the system sizes,
interaction strengths, and dopings we study, and s wave
contributions are strongly repulsive.
We study the single orbital Hubbard model in two dimen-

sions with nearest and next-nearest hopping parameters,

H ¼
X
k;σ

ðϵk − μÞc†kσckσ þU
X
i

ni↑ni↓; ð1Þ

whereμ is the chemical potential, k ismomentum, i labels sites
in real space,U is the interaction, and thedispersion is givenby
ϵk¼−2t½cosðkxÞþcosðkyÞ�−4t0cosðkxÞcosðkyÞ. We operate
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in a formalism that allows for a nonzero anomalous Green
function in the superconducting state, which is defined as
Fðk; τÞ ¼ −hTτck↑ðτÞc−k↓ð0Þi. At T > Tc superconducting
order will be absent, but fluctuations are captured by the
generalized susceptibility, written in imaginary time in terms
of the one- and two-particle Green functions as [17] (see
Supplemental Material [18] for definition and notations)

χσ1σ2σ3σ4ðk1τ1; k2τ2; k3τ3; k4τ4Þ
¼ G2;σ1…σ4ðk1τ1; k2τ2; k3τ3; k4τ4Þ

−Gσ1σ2ðk1τ1; k2τ2ÞGσ3σ4ðk3τ3; k4τ4Þ; ð2Þ
or as its Fourier transform

χωω
0ν

ppσσ0 ðk; k0; qÞ ¼
Z

β

0

Z
β

0

Z
β

0

dτ1dτ2dτ3

× χσσσ0σ0(kτ1; ðq − k0Þτ2; ðq − kÞτ3; k00)
× e−iωτ1eiðν−ω0Þτ2e−iðν−ωÞτ3 ; ð3Þ

where ω and ω0 are fermionic Matsubara frequencies, ν is a
bosonic Matsubara frequency, σ and σ0 are ↑ or ↓ spin labels,
k, k0, and q are initial, final, and transfer momenta, respec-
tively, andpp denotes the Fourier transform convention.With
the difference between the σσ0 ≡ ↑↑ and ↑↓ susceptibilities
defined as χpp↑↓ ¼ χpp↑↑ − χpp↑↓, linear response theory
relates χpp↑↓ to the response of a system to a generating
superconducting field ηðkÞ,
Z

β

0

dτ
δFðk0; τ ¼ 0; ηÞ

δηðk; τÞ
����
η¼0

¼ 1

β2
X
ωω0

χωω
0ν¼0

pp↑↓
ðk; k0; q ¼ 0Þ;

ð4Þ
where Fðk0; τ; ηÞ is the anomalous Green function computed
in the presence of an external superconducting field. We note
that the quantity on the left-hand side is commonly referred to
as the uniform pairing susceptibility [19,25].
Continuous phase transitions can be identified by the

point in phase space where the corresponding susceptibility
diverges. The susceptibility can then, using the Bethe-
Salpeter equation, be separated into a “bare” contribution,

χωω
0ν

0pp ðk; k0; qÞ ¼ −βGσðk; iωÞGσðq − k0; iν − iω0Þδωω0δkk0 ;

ð5Þ
which never diverges and a part containing an irreducible
vertex function Γpp,

χωω
0ν

pp↑↓
ðk; k0; qÞ ¼ χωω

0ν
0pp ðk; k0; qÞ − 1

β2
χωω

00ν
pp↑↓

ðk; k00; qÞ

× Γω00ω000ν
pp↑↓

ðk00; k000; qÞχω000ω0ν
0pp ðk000; k0; qÞ:

ð6Þ
In order to see the origin of the divergence in χωω

0ν
pp↑↓

, this

susceptibility can be expressed in matrix notation giving

χpp↑↓ ¼ χ0
1þ 1

β2
Γpp↑↓χ0

; ð7Þ

and the point of divergence of χ is identified as the point
where an eigenvalue of − 1

β2
Γpp↑↓χ0 crosses 1, and the

symmetry of the eigenvector will identify the symmetry of
the order parameter.
In what follows we solve the Hubbard model within

the (paramagnetic) dynamical cluster approximation which
approximates the self-energy of the interacting model by a
number Nc of “coarse-grained” frequency-dependent
but momentum-independent self-energy tiles. We primarily
present results for anNc ¼ 8 cluster since this is the smallest
DCA system that captures a clear distinction between nodal
and antinodal physics [20,26–28]. Comparisons to larger
and smaller Nc ¼ 4 and Nc ¼ 16 systems are shown in the
Supplemental Material [18]. Antiferromagnetic order is
actively suppressed in our calculations by enforcing para-
magnetic spin symmetry, and the presence or effect of charge
order [29] has not been investigated. The DCA calculation
provides one- and two-particle clusterGreen functions, from
which we extract cluster susceptibilities and, using the
formalism outlined in Ref. [21], the coarse-grained lattice
susceptibilities χωω

0ν
pp↑↓

ðK;K0; QÞ, where K, K0, and Q are

clustermomenta. In order to analyze the angular dependence
of the superconducting order, one typically performs a
multipole expansion restricted to the D4h square lattice
symmetry [30–32]. Because of our limited momentum
resolution, we project out and analyze the leading contri-
bution and are insensitive to higher order harmonics around
the Fermi surface. The accessible s−; p−; dxy, or dx2−y2
symmetries are enforced by including symmetry factors
gðKÞgðK0Þ while summing over all initial K and final K0
states in Eq. (4) [22,25,33], with

gðKÞ ¼

8>>><
>>>:

1 s

sinðKxÞ p

sinðKxÞ sinðKyÞ dxy
cosðKxÞ − cosðKyÞ dx2−y2 :

ð8Þ

The divergence of χωω
0ν is caused by the vertex correction

part χωω
0ν − χωω

0ν
0 . We impose a shorthand notation for this

quantity of interest, which we call the correlated pairing
susceptibility Pg, where g refers to the corresponding
symmetry function defined in Eq. (8), and we take this to
be the summation over fermionicMatsubara frequencies and
momenta:

Pg ≔ ðχ−χ0Þg ¼
1

β2
X

ωω0KK0
gðKÞgðK0Þ

× ½χωω00
pp↑↓

ðK;K0;0Þ−χωω
00

0 ðK;K0;0Þ�=
X
K

gðKÞ2: ð9Þ
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We show in the Supplemental Material [18] an explicit
example where the point of divergence of χ coincides with
the divergence of a single eigenvalue with dx2−y2 symmetry.
The fact that the correlated pairing susceptibility Pg must

become large on approach to Tc grants us additional
insights at T > Tc, where Pg can be used as a qualitative
measure of the proximity of the system to a transition. The
left-hand panel of Fig. 1 shows the critical temperature
obtained from systematically reducing T and explicitly
evaluating the eigenvalues of − 1

β2
Γpp↑↓χ0 to find the

divergence of the dx2−y2 susceptibility. The right-hand
panel contrasts this with the magnitude of Pg at much
higher temperatures, β ¼ 10=t, 15=t, 20=t, and 25=t. We
see Pg tracks Tc and shows the largest superconducting
fluctuations approximately where Tc is highest, as also
indicated by the vertical blue lines. The correspondence of
Pg to Tc improves as T decreases towards Tc.

In Fig. 2(a) we explore Pdx2−y2
as a function of particle

density n (n ¼ 1 denotes half filling) in the intermediate
interaction strengths regime U=t ¼ 4–7 at β ¼ 15=t ≈ 2Tc.
For the weakest interaction strength considered here,
U ¼ 4t, the superconducting dx2−y2 fluctuations are
strongest at half filling and decrease rapidly towards larger
hole and electron doping. At 10% doping, the model
has been shown to be dx2−y2 superconducting by DCA
calculations extrapolated to the thermodynamic limit [23],
and eight-site fluctuations have shown to be weaker than
for the lattice model. The maximum of fluctuations at
half filling is consistent with results from weak coupling
theory [34], FLEX [35], and diagrammatic Monte Carlo
calculation in the weak coupling limit [22], and is also
observed in results from lattice quantum Monte Carlo
(QMC) simulation [36] and the two-particle-self-consistent
(TPSC) approximation [37]. Reduction of U rapidly
suppresses the strength of fluctuations. Pdx2−y2

increases

at all n as U is raised to 5t. As U is further raised to 6t,
the strength of fluctuations increases away from half
filling but decreases near half filling, and the fluctuation
maximum moves to finite doping, establishing a dome. The
suppression at half filling coincides with the establishment
of a pseudogap at this interaction strength [26,27], and is
also seen in QMC simulation [25] and TPSC [37,38]
(though it seems to be absent in four-site cellular dynamical
mean field (CDMFT) [39]). Simulations directly in the
superconducting phase [6] have also shown that super-
conductivity in this region is suppressed. Above U=t ¼ 6.4
the half filled system becomes Mott insulating [27]
and superconducting fluctuations are further suppressed
(but remain nonzero), while their maximum strength
moves to higher doping, giving the appearance of a
dome structure centered at doping, δ ∼�1=8 for
U=t ∼ 8. As the interaction strength is further increased,
fluctuations are suppressed and quickly decay, in
qualitative agreement with simulations of the t-J model
[40] and Hubbard numerical linked-cluster expansion
(NLCE) calculations [19].
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FIG. 1 (color online). Left-hand panel: Superconducting critical
temperature of the Hubbard model with nearest-neighbor hop-
ping and next-nearest-neighbor hopping t0 ¼ −0.1t, for U ¼ 6t,
using an Nc ¼ 8 dynamical cluster approximation. Right-hand
panel: Pdx2−y2

at different temperatures with interaction strength

U ¼ 6t and next-nearest-neighbor hopping t0 ¼ −0.1t using an
Nc ¼ 8 cluster.
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FIG. 2 (color online). Pdx2−y2
for different interaction strengths as a function of carrier concentration on an eight-site cluster, for t0 ¼ 0

(a), t0 ¼ −0.1t (b), and t0 ¼ −0.2t (c) at β ¼ 15=t. U ¼ 4t (black solid line, circles), 5t (red dotted line, squares), 6t (green dashed line,
diamonds), and 7t (blue dash-dotted line, triangles).
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Figure 3 expands further upon the data of Fig. 2,
including additional data points at intermediate interaction
values, as a false color contour plot at t0 ¼ 0 in Fig. 3 (Top).
The plot clearly shows the intermediate interaction region
most conducive to superconductivity. The point of maxi-
mum susceptibility, which occurs at Umax; nmax, is marked
as þ and occurs at U=t ¼ 6, n ¼ 0.92 for the eight-site
cluster. A wide area in the vicinity of this point exhibits
fluctuation within 10% of the maximum value, showing
that dx2−y2 superconducting fluctuation is a robust feature
of the model. Finite size effects change the precise location
and general strength of the fluctuations (see Supplemental
Material [18]) but not the overall shape. Long-range
antiferromagnetism may preempt the superconducting
phase near half filling; see, e.g., Ref. [7].
Next-nearest-neighbor hopping, shown in Figs. 2(b),

2(c), and 3, has a profound effect on dx2−y2 fluctuations.
As the interaction strength is raised, a pronounced particle-
hole asymmetry appears for t0=t ¼ −0.1 [Figs. 2(b) and 3
(middle)] that increases superconducting fluctuations on
the electron-doped side (n > 1) while suppressing them on
the hole-doped side. Increasing t0 to −0.2t [Figs. 2(c) and 3
(bottom)] leads to a further enhancement of fluctuations on
the electron-doped side and increased suppression on the
hole-doped side near half filling. This behavior seems to be
unrelated to any feature in the single particle density of
states, which has a van Hove maximum on the hole-doped
side. Rather, we attribute it to the establishment of a
pseudogap on the hole-doped side, which is absent on
the electron-doped side [27], and which is known to rapidly
suppress critical temperature near half filling [6]. The
magnitude of fluctuation at the electron-doped side (and
outside of the pseudogap region at the hole-doped side) is

not significantly changed, suggesting (in agreement with
exact diagonalization (ED) and density matrix renormali-
zation group (DMRG) simulations on t-J ladders [40,41]
and non-crossing approximation (NCA) results on 2 × 2
clusters) that the t0 trends observed in real materials are not
captured by the single band Hubbard model [42]. We find
that further increase of t0 continues this trend and reduces
the overall susceptibility to dx2−y2 superconductivity.
Our results suggest that the low-energy effective models

of high Tc compounds do not just differ by t0, but also by
their on-site interactions U. As the electron-doped com-
pounds have a much lower critical temperature than the
hole-doped ones, we surmise that they are not localized
at the point in phase space that yields the highest Tc, and
that an increase of U would rapidly increase the critical
temperature.
Finally, we establish the absence of high-temperature

superconducting fluctuations in other symmetry channels
by considering gðkÞgðk0Þ factors with alternate symmetry in
the two-particle representation of the susceptibility. We plot
results for t0=t ¼ 0, −0.1, and −0.2 in Figs. 4(a)–4(c) at
U=t ¼ 6, for dxy and p-wave symmetry, and include dx2−y2
for reference (also shown in Fig. 2).
In the large doping weak coupling regime, dx2−y2 super-

conductivity is preempted by dxy superconductivity
[43,44]. This is also found in RPA calculations [45,46]
and diagrammatic QMC calculations [22]. In contrast, the
vertex contribution to dxy superconductivity is repulsive
near half filling, consistent with early QMC calculations
[25]. Figure 4 shows how it changes sign for larger doping
and eventually becomes the dominant contribution.
As U is raised in the dilute (n → 0) limit, dxy order is

replaced immediately byp-wave superconductivity [22,35].
Third order perturbative calculations [45] also find a large
range of p-wave stability (but no dxy) in the large doping
regime at U ¼ 6, and DCA calculations similarly found
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FIG. 3 (color online). Contour plots for Pdx2−y2
in space of

interaction strength and carrier concentration on an eight-site
cluster at β ¼ 15=t. Top: t0 ¼ 0. Middle: t0 ¼ −0.1t. Bottom:
t0 ¼ −0.2t. Tmax

c occurs at ðUmax; nmaxÞ ¼ ð5.5; 0.95; and 1.05Þ,
(6,1.03), (6,1.01), respectively, marked by a þ symbol.

FIG. 4 (color online). The correlated pairing susceptibility
Pg in different symmetry channels with interaction strength
U ¼ 6t, at βt ¼ 15, using eight-site cluster. (a) t0 ¼ 0,
(b) t0 ¼ −0.1t, (c) t0 ¼ −0.2t.
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dominant p-wave contributions [47]. Within our calcula-
tions, p-wave contributions to the vertex are zero within
errors in the entire range of phase space, except near half
filling,where they are repulsive. Our data are consistentwith
Ref. [47] on the level of the susceptibility, but we find that
the dominant contribution observed in that work is carried
by χ0, not the vertex part. Whether a DCA simulation could
find dominant p-wave contributions to the vertex at smaller
U, lower T, or on larger systems is an open question. The
highest critical temperature of any non-dx2−y2 superconduc-
tivity is far below the T examined in this work.
Over the entire phase space, s-wave superconductivity

(not plotted in Fig. 4) is strongly repulsive, consistent with
QMC calculations [25,48,49]. At t0 ¼ −0.2 and in the
dilute limit, weak coupling and RPA results suggest a
favored dxy symmetry [43,46,50], consistent with our
results at larger U=t and high temperatures.
In summary, we have identified the regions in parameter

space that give optimal superconducting transition temper-
atures, using a formalism based on two-particle simulations
at temperatures much higher than Tc, We have explored the
susceptibility of the Hubbard model towards superconduct-
ing order over the entirety of the phase diagram.
We find that both weak and strong interaction regimes, as

well as low doping and half filled regimes, are nonoptimal
for superconducting fluctuations, but that there is a large
region that is very conducive to superconductivity. For
t0 < 0, we find a shift of the optimal superconducting
features to the electron-doped side of the phase diagram,
due to the establishment of a competing pseudogap on the
hole-doped side. As actual electron-doped compounds have
a lower Tc than the hole-doped ones, we surmise that a
rapid increase of Tc could be achieved by changing the
effective on-site interaction.
By examining alternate order symmetries and t0 < 0

we show susceptibility towards dxy but not p-wave super-
conductivity in the strongly hole-doped n → 0 (dilute) limit.
We emphasize that transitions to those symmetries happen at
temperaturesmuch lower than theTwe have examined here.
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