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Motivated by the properties of the iron chalcogenides, we study the phase diagram of a generalized
Heisenberg model with frustrated bilinear-biquadratic interactions on a square lattice. We identify zero-
temperature phases with antiferroquadrupolar and Ising-nematic orders. The effects of quantum fluctua-
tions and interlayer couplings are analyzed. We propose the Ising-nematic order as underlying the structural
phase transition observed in the normal state of FeSe, and discuss the role of the Goldstone modes of the
antiferroquadrupolar order for the dipolar magnetic fluctuations in this system. Our results provide a
considerably broadened perspective on the overall magnetic phase diagram of the iron chalcogenides and
pnictides, and are amenable to tests by new experiments.
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Introduction.—Because superconductivity develops near
magnetic order in most of the iron pnictides and chalco-
genides, it is important to understand the nature of their
magnetism. The iron pnictide families typically have parent
compounds that show a collinear ðπ; 0Þ antiferromagnetic
order [1]. Lowering the temperature in the parent com-
pounds gives rise to a tetragonal-to-orthorhombic distor-
tion, and the temperature Ts for this structural transition is
either equal to or larger than the Néel transition temperature
TN . A likely explanation for Ts is an Ising-nematic
transition at the electronic level. It was recognized from
the beginning that models with quasilocal moments and
their frustrated Heisenberg J1-J2 interactions [2] feature
such an Ising-nematic transition [3–6]. Similar conclusions
have subsequently been reached in models that are based on
Fermi-surface instabilities [7].
The magnetic origin for the nematicity fits well with the

experimental observations of the spin excitation spectrum
observed in the iron pnictides. Inelastic neutron scattering
experiments [8] in the parent iron pnictides have revealed a
low-energy spin spectrum whose equal-intensity counters
in the wave vector space form ellipses near ð�π; 0Þ and
ð0;�πÞ. At high energies, spin-wave-like excitations are
observed all the way to the boundaries of the underlying
antiferromagnetic Brillouin zone [9]. These features are
well captured by Heisenberg models with the frustrated
J1-J2 interactions and biquadratic couplings [10,11],
although at a refined level it is also important to incorporate
the damping provided by the coherent itinerant fermions
near the Fermi energy [10].
Experiments in bulk FeSe do not seem to fit into this

framework. FeSe is one of the canonical iron chalcogenide

superconductors [12,13]. In the single-layer limit, it
currently holds particular promise towards a very high
Tc superconductivity [14–16] driven by strong correla-
tions [17]. In the bulk form, this compound displays a
tetragonal-to-orthorhombic structural transition, with
Ts ≈ 90 K, but no Néel transition has been detected
[18–21]. This distinction has been interpreted as pointing
towards the failure of the magnetism-based origin for the
structural phase transition [20,21]. At the same time, experi-
ments have also revealed another aspect of the emerging
puzzle. The structural transition clearly induces dipolar
magnetic fluctuations [20,21].
In this Letter, we show that a generalized Heisenberg

model with frustrated bilinear-biquadratic couplings on a
square lattice contains a phase with both a ðπ; 0Þ antiferro-
quadrupolar (AFQ) order and an Ising-nematic order. The
model in this regime displays a finite-temperature transition
into the Ising-nematic order and, in the presence of interlayer
couplings, also a finite-temperature transition into the AFQ
order. We suggest that such physics is compatible with the
aforementioned and related properties of FeSe. The
Goldstone modes of the AFQ order are responsible for
the onset of dipolar magnetic fluctuations near the wave
vector ðπ; 0Þ, which is experimentally testable.
Model.—We consider a spin Hamiltonian with S ≥ 1 on

a two-dimensional (2D) square lattice:

H ¼ 1

2

X

i;δn

fJnSi · Sj þ KnðSi · SjÞ2g; ð1Þ

where j ¼ iþ δn, and δn connects site i and its n-th nearest
neighbor sites with n ¼ 1, 2, 3. Here Jn and Kn are,
respectively, the bilinear and biquadratic couplings
between the n-th nearest neighbor spins. For iron pnictides
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and iron chalcogenides, the local moments describe the
spin degrees of freedom associated with the incoherent part
of the electronic excitations and reflect the bad-metal
behavior of these systems [1,2,4–6]. A nonzero J3 is
believed to be important for the iron chalcogenides,
especially FeTe [22]. The biquadratic couplings Kn are
expected to play a significant role in multiorbital systems
with moderate Hund’s coupling [23]. The nearest neighbor
coupling K1 was included in previous studies [10,11] to
understand the strong anisotropic spin excitations in the
Ising-nematic ordered phase, where the ground state has a
ðπ; 0Þ or ð0; πÞ antiferromagnetic (AFM) order. With the
goal of searching for the new physics that could describe
the properties of FeSe, in this work, we take these
couplings as variables and study the pertinent unusual
phases in the phase diagram. In the following, to simplify
the discussion on the relevant AFM and AFQ phases, we
take K1 ¼ −1 and use jK1j as the energy unit. Note that a
moderately positive K1 in the presence of further-neighbor
Kn couplings will lead to similar results, but a K1 coupling
alone in the absence of the latter will not generate the
physics discussed below.
Some general considerations are in order. For S ≥ 1

ðSi · SjÞ2 ¼
1

2
Qi ·Qj −

1

2
Si · Sj þ

1

3
S2
i S

2
j ; ð2Þ

where Qi is a quadrupolar operator with five components

Qr2−3z2
i ¼ð1= ffiffiffi

3
p Þ½ðSxi Þ2þðSyi Þ2−2ðSzi Þ2�, Qx2−y2

i ¼ðSxi Þ2−
ðSyi Þ2, Qxy

i ¼ Sxi S
y
i þ Syi S

x
i , Q

yz
i ¼ Syi S

z
i þ SziS

y
i , and Qzx

i ¼
SziS

x
i þ Sxi S

z
i . Therefore, the biquadratic interaction may

promote a long-range ferroquadrupolar-antiferroquadrupo-
lar (FQ-AFQ) order. With the aforementioned motivation,
we are interested in a ðπ; 0Þ AFQ order, which would break
the C4 symmetry and should yield an Ising-nematic order
parameter.
Low-temperature phase diagram of the classical spin

model.—We first study the model in Eq. (1) for classical
spins. For simplicity, we discuss the case K3 ¼ 0. We have
calculated the dipolar and quadrupolar magnetic structure
factors via Monte Carlo simulations using the standard
Metropolis algorithm [24]. Representative results for the
structure factor data are shown in Fig. 1 for J3 ¼ 0 and
J1 ¼ J2. The two cases, corresponding to different values
of K2, show, respectively, dominant ferroquadrupolar (FQ)
and ðπ; 0Þ AFQ correlations, for the finite-size systems
studied and at a very low temperature T=jK1j ¼ 0.01.
Overall, as shown in Fig. 2(a), we find that there are large

regimes in the phase diagram in which the FQ and ðπ; 0Þ
AFQ moments are almost ordered, while the dipolar
moments coexisting with the FQ-AFQ moments are very
weakly correlated. Hence, in these regimes, the dominant
low-temperature order is the FQ-AFQ one. In between
these, there is a regime in which the dominant correlation
occurs in the ðπ; 0Þ AFM channel.
Similar results for the case of J1 ¼ 0 and J2 ¼ J3 are

shown in Fig. 2(b). A large regime with dominating FQ or
ðπ; 0Þ AFQ correlations is also found. The difference from
the case of J3 ¼ 0 and J1 ¼ J2 occurs in the regime with
dominant AFM correlations, for which the wave vector is
now ð�π=2;�π=2Þ as is relevant to the FeTe compound.
For 2D systems, thermal fluctuations will ultimately (in

the thermodynamic limit) destroy any order that breaks a
continuous global symmetry at any nonzero temperature
[25]. The dashed lines in Fig. 2 therefore mark crossovers
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FIG. 1 (color online). Momentum distribution of the dipolar
(top row) and quadrupolar (bottom row) magnetic structure
factors at K2 ¼ −1 (a),(c) and K2 ¼ 1.5 (b),(d), respectively.
Here, J1 ¼ J2 ¼ 1, J3 ¼ K3 ¼ 0, and K1 ¼ −1. The calculations
are done on a 40 × 40 lattice at T=jK1j ¼ 0.01 with up to 105

Monte Carlo steps. In (d), besides the leading AFQ correlations at
ðπ; 0Þ and ð0; πÞ, subleading FQ correlations are observed at
finite temperatures; as the temperature is lowered, the former is
enhanced whereas the latter is diminished.
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FIG. 2 (color online). Low-temperature phase diagrams of the
classical bilinear-biquadratic Heisenberg model at (a) J1 ¼ J2,
J3 ¼ K3 ¼ 0 and (b) J1 ¼ K3 ¼ 0, J2 ¼ J3. Both are shown at
T=jK1j ¼ 0.01. Dashed lines show finite-temperature crossovers
between different orders. The dominant order in each regime is
labeled. In each case, the solid line shows the mean-field phase
boundary at T ¼ 0.
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between regimes with different dominant correlations. At
T ¼ 0, on the other hand, genuine FQ-AFQ order can occur
in our model on the square lattice. We have therefore also
analyzed the mean-field phase diagrams at T ¼ 0. The
resulting phase boundary is shown in each case as a solid
line in Fig. 2. The results are compatible with the cross-
overs identified at low but nonzero temperatures. For the
case of J3 ¼ 0 and J1 ¼ J2, shown in Fig. 2(a), the
phase on the left of the solid line has a mixture of an
AFM phase ordered at q ¼ ðπ; 0Þ or ð0; πÞ and a FQ phase.
The phase on the right of the solid line has an AFQ phase
ordered at q ¼ ðπ; 0Þ or ð0; πÞ. Note that in the classical
limit, the spins are treated as O(3) vectors, and should
always be ordered at zero temperature. We find that in the
AFQ phase, the spins can be ordered at a wave vector ðq; πÞ
or ðπ; qÞ for arbitrary q, with an infinite degeneracy [26].
Such a frustration would likely stabilize a purely AFQ
ground state when quantum fluctuations are taken into
account (see below). For the case of J1 ¼ 0 and J2 ¼ J3,
shown in Fig. 2(b), the mean-field result also yields FQ or
ðπ; 0Þ AFQ order, respectively, to the left or right of the
solid line. However, the wave vector for the AFM orders
that mix, respectively, with the FQ and ðπ; 0Þ AFQ order
has become ð�π=2;�π=2Þ [26].
Similar to the ðπ; 0Þ AFM state, the ðπ; 0Þ AFQ phase

breaks the lattice C4 rotational symmetry. An accompany-
ing Ising-nematic transition is to be expected, and should
develop at nonzero temperatures even in two dimensions.
We define the general Ising-nematic operators as follows:

σn ¼ ðSi · Siþx̂Þn − ðSi · SiþŷÞn; ð3Þ

where n ¼ 1; 2. We also introduce the quadrupolarQA=B to
be the linear superposition ofQðπ; 0Þ=ð0; πÞ, with the ratios
of their coefficients to be �1, respectively. From Eq. (2),
we see that for quantum spins, the Ising-nematic order
associated with Q should be seen in both σ1 and σ2. For
classical spins, since Qi ·Qj ¼ 2ðSi · SjÞ2 − 2

3
S2
i S

2
j , only

σ2 will manifest QA ·QB. This allows us to determine the

origin of the Ising-nematic order in the AFQþ AFM phase.
As shown in Fig. 3(a), for theK1-K2 model, σ2 is ordered at
Tσ=jK1j ≈ 0.38 but σ1 ≈ 0 for any T > 0. Likewise, from
Fig. 3(b), in the case J1 ¼ 0 and J2 ¼ J3, the dominant
Ising nematic order parameter is σ2 for T < Tσ ≈ 0.9,
and σ1 never becomes substantial down to the lowest
temperature T ¼ 10−4 accessible to our numerical simu-
lation. These indicate that the Ising-nematic order in the
AFQþ AFM phase is associated with the anisotropic spin
quadrupolar fluctuations.
The quantum spin models.—The AFQ phase and the

associated Ising-nematic transition are features of the
generalized J-K model for both classical and quantum
spins. To consider the effect of quantum fluctuations, we
consider the case of S ¼ 1. We study its ground-state
properties via a semiclassical variational approach by using
an SU(3) representation [27], and identify parameter
regimes that stabilize the AFQ phase. We further study
the spin excitations in the AFQ phase with the ordering
wave vector qA ¼ ðπ; 0Þ using a flavor-wave theory [26].
Because the AFQ order breaks the continuous spin-
rotational invariance, the Goldstone modes will have a
nonzero dipolar matrix element [27,28]. To explicitly
demonstrate this, we calculate the dynamical spin dipolar
structure factor SxxD ðq;ωÞ near qA, which is shown in Fig. 4.
Therefore, the development of the AFQ order is accom-
panied by a sharp rise in the dynamical spin dipolar
correlations centered around the wave vector ðπ; 0Þ (and
symmetry-related wave vectors).
Coupling to itinerant fermions and interaction between

layers.—One additional effect of the quantum fluctuations
is that it can suppress the weak AFM order when the
dominant order is AFQ. We discuss one source of such an
effect, which is the coupling of the order parameters to the
coherent itinerant fermions. The effect of coupling to the
itinerant fermions can be treated as in Ref. [6] within an
effective Ginzburg-Landau action, and is briefly discussed
in the Supplemental Material [26]. When only the ðπ; 0Þ
AFM order and the Ising-nematic order are present, the
coupling to the itinerant fermions will suppress the AFM
and Ising-nematic order concurrently [29]. However, when
the dominant order is AFQ, the coupling to the itinerant
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FIG. 3 (color online). Temperature dependence of the Ising-
nematic order parameters σ1 and σ2 at (a) J1 ¼ J2 ¼ J3 ¼ 0,
K1 ¼ −1, and K2 ¼ 1 and (b) J1 ¼ 0, J2 ¼ J3 ¼ 0.5, K1 ¼ −1,
and K2 ¼ 2. In both cases the dominant part of the Ising-nematic
order is σ2, which is associated with the AFQ order.
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FIG. 4 (color online). Calculated spin excitation spectrum in the
ðπ; 0Þ AFQ phase of the quantum S ¼ 1 model. We have taken
J1 ¼ J2 ¼ 0.25, J3 ¼ 0, K2 ¼ 0.5, and K3 ¼ −0.3. The color
codes the dynamical spin dipolar structure factor
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fermions can suppress the AFM order while retaining the
stronger AFQ order and the associated Ising-nematic order.
When interlayer bilinear-biquadratic couplings are taken

into account, a phase with a pure AFQ order can be
stabilized at finite temperature. We can then discuss the
evolution of the Ising-nematic transition as a function of the
J2=K2 ratio. Consider the case when a dominating J2
stabilizes a ðπ; 0Þ AFM order, which is accompanied by the
Ising-nematic order parameter σ1. For sufficiently large K2,
the AFQ order becomes the dominant order, and the Ising-
nematic order is predominantly given by σ2. The schematic
evolution between the two limits is illustrated in Fig. 5. We
have illustrated the case with the quantum fluctuations
having suppressed the weaker order.
We stress that, such an evolution of the Ising-nematic

transition already occurs in the purely 2D model. Results
from explicit calculations on the evolution of the transition
temperature Tσ are shown in the Supplemental Material
[26]. In the case of the Ising-nematic transition associated
with a ðπ; 0Þ AFM order, the interlayer couplings give rise
to a nonzero TAFM ≤ Tσ (Refs. [4–6]). Similarly, when the
dominant order is a ðπ; 0Þ AFQ order, such couplings lead
to a nonzero TAFQ ≤ Tσ.
Implications for FeSe.—General considerations suggest

that the cases of spin 1 or spin 2 are pertinent to the iron-
based materials [2]. Judging from the measured total spin
spectral weight [1], the spin 1 case would be closer to the
iron pnictides while the spin 2 case would be more
appropriate for the iron chalcogenides.
Accordingly, it is natural to propose that the normal state

of FeSe realizes the phase whose ground state has the ðπ; 0Þ
AFQ order accompanied by the Ising-nematic order. In this
picture, the structural transition at Ts ∼ 90 K corresponds
to the concurrent Ising-nematic and AFQ transition, as
illustrated in Fig. 5. This picture explains why the structural
phase transition is not accompanied by any static AFM
order. At the same time, as soon as the AFQ order is
developed, its Goldstone modes will contribute towards

low-energy dipolar magnetic fluctuations. This is consis-
tent with the onset of low-energy spin fluctuations observed
in the NMR measurements [20,21]. It will clearly be
important to explore such spin fluctuations using inelastic
neutron scattering measurements. A quantitative compari-
son between the measured and calculated spin excitation
spectra would allow estimates of the coupling constants Jn
and Kn. The Goldstone modes may also be probed by
magnetoresistance, and unusual features in this property
have recently been reported [30]. Finally, the Ising-nematic
order is linearly coupled not only to the structural
anisotropy, but also to the orbital order. Similarly as for
the iron pnictides [31], this would result in, for instance, the
lifting of the dxz-dyz orbital degeneracy at the structural
phase transition [32–34].
The phase diagrams given in Fig. 2 show that the AFQ

region can be tuned to an AFM region. The nature of the
AFM phase depends on the bilinear couplings. For a range
of bilinear couplings, the nearby AFM phase has the
ordering wave vector ðπ=2; π=2Þ. This provides a means
to connect the magnetism of FeSe and FeTe [35,36], which
is of considerable interest to the on-going experimental
efforts in studying the magnetism of the Se-doped FeTe
series [37]. It also makes it natural to understand the
development of magnetic order that seems to occur when
FeSe is placed under a pressure on the order of 1 GPa
[38–40]. Finally, we note that our results will serve as the
basis to shed new light on the nematic correlations in the
superconducting state [41–43].
Broader context.—It is widely believed that understand-

ing the magnetism in the iron chalcogenide FeTe, where the
ordering wave vector ðπ=2; π=2Þ has no connection with
any Fermi-surface-nesting features [35,36], requires a
local-moment picture. The proposal advanced here not
only provides an understanding of the emerging puzzle on
the magnetism in FeSe, but also achieves a level of
commonality in the underlying microscopic interactions
across these iron chalcogenides. Furthermore, the connec-
tion between the AFQ order and the ðπ; 0Þ AFM order
suggests that the local-moment physics, augmented by a
coupling to the coherent itinerant fermions near the Fermi
energy, places the magnetism of a wide range of iron-based
superconductors in a unified framework. Since local-
moment physics in bad metals reflects a proximity to
correlation-induced electron localization, this unified per-
spective also signifies the importance of electron correla-
tions [2,44–48] to the iron-based superconductors.
Conclusions.—To summarize, we have studied a

generalized Heisenberg model with frustrated bilinear-
biquadratic interactions on a square lattice and find that
the zero-temperature phase diagram stabilizes an antiferro-
quadrupolar order. The anisotropic spin quadrupolar fluc-
tuations give rise to a finite-temperature Ising-nematic
transition. We propose that the structural phase transition
in FeSe corresponds to this Ising-nematic transition and
is accompanied by an antiferroquadrupolar ordering.
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FIG. 5 (color online). Sketched phase diagram in terms of T and
J2=K2. The dominant order may be either AFQ or AFM. The
thinner dashed lines show the associated ordering temperatures
TAFQ and TAFM. A first-order transition (thicker dashed line)
takes place at an intermediate J2=K2 coupling when the two
transitions meet. The Ising-nematic transition (solid line) takes
place at Tσ . There can be either a first-order Ising-nematic and
AFM (or AFQ) transition at Tσ ¼ TAFM or AFQ, or two separate
transitions.
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We suggest that inelastic neutron scattering experiments be
carried out to explore the proposed Goldstone modes
associated with the antiferroquadrupolar order. Our results
provide a natural understanding for an emerging puzzle on
FeSe. More generally, the extended phase diagrams
advanced here considerably broaden the perspective on
the magnetism and electron correlations of the iron-based
superconductors.
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Note added.—Recently, a study appeared that also empha-
sized the local-moment-based magnetic physics for FeSe,
but invoked a different mechanism based on a possible
paramagnetic Ising-nematic ground state caused by J1-J2
frustration [49]. A distinction of the mechanism advanced
here is that the AFQ order yields Goldstone modes and
therefore causes the onset of low-energy dipolar magnetic
fluctuations. In addition, results from inelastic neutron
scattering experiments in FeSe have appeared [50,51],
which verify the ðπ; 0Þ magnetic excitations expected from
our theoretical proposal.
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