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We report diffusion quantum Monte Carlo calculations of the interlayer binding energy of bilayer
graphene. We find the binding energies of the AA-and AB-stacked structures at the equilibrium separation
to be 11.5(9) and 17.7ð9Þ meV=atom, respectively. The out-of-plane zone-center optical phonon frequency
predicted by our binding-energy curve is consistent with available experimental results. As well as assisting
the modeling of interactions between graphene layers, our results will facilitate the development of van der
Waals exchange-correlation functionals for density functional theory calculations.
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Van der Waals (vdW) interactions play a crucial role in a
wide range of physical and biological phenomena, from the
binding of rare-gas solids to the folding of proteins.
Significant efforts are therefore being made to develop
computational methods that predict vdW contributions to
energies of adhesion, particularly for materials such as
multilayer graphene. This task has proved to be challenging,
however, because vdW interactions are caused by nonlocal
electron correlation effects. Standard first-principles
approaches such as density functional theory (DFT) with
local exchange-correlation functionals do not describe vdW
interactions accurately. One technique for including vdW
interactions in a first-principles framework is to add energies
obtained using pairwise interatomic potentials to DFT total
energies; this is the so-called DFT-D scheme [1–4]. The
development of vdWdensity functionals (vdW-DFs) that can
describe vdW interactions in a seamless fashion is another
promising approach [5–8]. DFT-based random-phase
approximation (RPA) calculations of the correlation energy
[9,10] provide amore sophisticated method for treating vdW
interactions; however, RPA atomization energies are typi-
cally overestimated by up to 15% for solids [11,12], and
hence the accuracy of this approach is unclear. Symmetry-
adapted perturbation theory based on DFT allows one to
calculate thevdWinteractions betweenmolecules and hence,
by extrapolation, between nanostructures [13]. Finally,
empirical interatomic potentials with r−6 tails may be used
to calculate binding energies [14,15], although such poten-
tials give a qualitatively incorrect description of the inter-
action of metallic or π-bonded two-dimensional (2D)
materials at large separation [16].
A key test system for methods purporting to describe

vdW interactions between low-dimensional materials is
bilayer graphene (BLG). Several theoretical studies have
used methods based on DFT to calculate the binding energy
(BE) of BLG. Some of the results are summarized in
Table I, but there is very little consensus. In this Letter we

provide diffusion quantumMonte Carlo (DMC) data for the
BE of BLG and the atomization energy of monolayer
graphene (MLG), which we have extrapolated to the
thermodynamic limit. We find the DMC BE of BLG to
be somewhat less than the BEs predicted by DFT-D,
although the latter vary significantly from scheme to
scheme. The DMC method is the most accurate first-
principles technique available for studying condensed
matter. Our data can therefore be used as a benchmark
for the development of vdW functionals.
We have used the variational quantum Monte Carlo and

DMC methods as implemented in the CASINO code [22] to
study MLG and BLG. In the former method, Monte Carlo
integration is used to evaluate expectationvalueswith respect

TABLE I. BE of BLG (both AA and AB stacked) obtained in
recent theoretical studies. The layer separations d quoted in the
table are the ones used in the calculations, not necessarily the
optimized bond length for the given method. SAPT(DFT) and
DFT-LCAO-OO denote symmetry-adapted perturbation theory
based on DFT and a linear combination of atomic orbitals and
orbital occupancy based on DFT, respectively. MBD denotes
many-body dispersion calculations.

Stacking Method d (Å) BE (meV=atom)

AA vdW-DF [17] 3.35 10.4
AA DFT-D [17] 3.25 31.1
AA DMC (present work) 3.495 11.5(9)
AB DFT-LCAO-OO [18] 3.1–3.2 70 (5)
AB SAPT(DFT) [19] 3.43 42.5
AB vdW-DF [7] 3.6 45.5
AB vdW-DF [17] 3.35 29.3
AB DFT-D [17] 3.25 50.6
AB DFT-D [20] 3.32 22
AB MBD [21] 3.37 23
AB DMC (present work) 3.384 17.7(9)

PRL 115, 115501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

11 SEPTEMBER 2015

0031-9007=15=115(11)=115501(5) 115501-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.115501
http://dx.doi.org/10.1103/PhysRevLett.115.115501
http://dx.doi.org/10.1103/PhysRevLett.115.115501
http://dx.doi.org/10.1103/PhysRevLett.115.115501


to trial many-body wave-function forms that may be of
arbitrary complexity. In the DMC method [23,24], a sto-
chastic process governed by the Schrödinger equation in
imaginary time is simulated to project out the ground-state
component of the trial wave function. Fermionic antisym-
metry is maintained by the fixed-node approximation, in
which the nodal surface is constrained to equal that of the trial
wave function [25]. DMC methods have recently been used
to study the BE of hexagonal boron nitride bilayers [26].
Our many-body trial wave-function form consisted of

Slater determinants for spin-up and spin-down electrons
multiplied by a symmetric, positive Jastrow correlation
factor expðJÞ [24]. The Slater determinants contained
Kohn-Sham orbitals that were generated using the
CASTEP plane-wave DFT code [27] within the local density
approximation (LDA). We performed test DMC calcula-
tions for 3 × 3 supercells of MLG and AB-stacked BLG
using Perdew-Burke-Ernzerhof (PBE) [28] orbitals. The
effect of changing the orbitals on the DMC total energies
(and hence the BE) was statistically insignificant.
To improve the scaling of our DMC calculations and to

allow the use of 2D-periodic boundary conditions, the
orbitals were re-represented in a basis-spline (blip) [29].
The Jastrow exponent J consisted of polynomial and plane-
wave expansions in the electron-ion and electron-electron
distances [30]. The free parameters in the Jastrow factor
were optimized by unreweighted variance minimization
[31,32]. The DMC energy was extrapolated linearly to zero
time step and we verified that finite-population errors in our
results are negligible (see the Supplemental Material [33]).
The fixed-node error is of an uncertain magnitude, but it is
always positive, and it should largely cancel when the BE is
calculated. We used Dirac-Fock pseudopotentials to re-
present the C atoms [41,42] and fixed the in-plane lattice
parameter at the experimental value of a ¼ 2.460 Å.
The principal source of uncertainty in our BE results is

the need to use finite simulation cells subject to periodic
boundary conditions in DMC calculations for condensed
matter. Finite-size errors in DMC total energies consist of
(i) pseudorandom, oscillatory single-particle finite-size
errors due to momentum quantization and (ii) systematic
finite-size errors due to the inability to describe long-range
two-body correlations and the difference between 1=r and
the 2D Ewald interaction [43,44] in a finite periodic cell.
By dividing the electron-electron interaction energy into a
Hartree term (the electrostatic energy of the charge density)
and an exchange-correlation energy (the interaction energy
of each electron with its accompanying exchange-correla-
tion hole) and considering the long-range nonoscillatory
behavior of the hole predicted by the RPA, it can be shown
that the systematic finite-size error in the interaction energy
per electron of a 2D-periodic system is negative and scales
asymptotically with system size N as OðN−5=4Þ [45]. The
leading-order long-range finite-size error in the kinetic
energy per electron behaves in a similar fashion. The

finite-size error in the atomization energy is therefore
positive and scales as OðN−5=4Þ, and the finite-size error
in the BE per atom must also exhibit the OðN−5=4Þ scaling.
We also investigated finite-size errors in the asymptotic BE
using the Lifshitz theory of vdW interactions [46,47] with a
Dirac model of electron dispersion in graphene. To study
finite system sizes, we introduced a cutoff wavelength that
depended on the cell size and layer separation. However,
near the equilibrium separation, short-range interactions are
important and the contribution to the finite-size error from
the Lifshitz theory is negligible. In order to eliminate finite-
size effects and obtain the atomization and binding energies
in the thermodynamic limit, we studied simulation cells
consisting of arrays of 3 × 3, 4 × 4, and 6 × 6 primitive
cells for MLG and BLG at the equilibrium layer separation
and 3 × 3 and 5 × 5 cells for BLG at nonequilibrium layer
separations. We used canonical-ensemble twist averaging
[48] (i.e., averaging over offsets to the grid of k vectors) to
reduce the oscillatory single-particle finite-size errors in the
ground-state energies of MLG and BLG. To obtain the
twist-averaged energy of MLG in a simulation cell con-
tainingNP primitive cells, we performed DMC calculations
at 12 random offsets ks to the grid of k vectors, then fitted

EðNP;ksÞ ¼ ĒðNPÞ þ b½ELDAðNP;ksÞ − ELDAð∞Þ� ð1Þ

to the DMC energies per atom EðNP;ksÞ. The model
function has two fitting parameters: ĒðNPÞ, which is the
twist-averaged DMC energy per atom, and b.
ELDAðNP;ksÞ is the DFT-LDA energy per atom of MLG
obtained using the offset k-point grid corresponding to the
supercell used in the DMC calculations, and ELDAð∞Þ is
the DFT-LDA energy per atom obtained using a fine
(50 × 50) k-point mesh. Finally, we extrapolated our
total-energy data to infinite system size by fitting

ĒðNPÞ ¼ Eð∞Þ þ cN−5=4
P ð2Þ

to the twist-averaged energies per atom, where the extrapo-
lated energy per atom Eð∞Þ and c are the fitting param-
eters. The atomization energy of MLG is the difference
between the energy of an isolated, spin-polarized C atom
and the energy per atom of MLG.
Our DMC atomization energies of MLG as a function of

system size are plotted in Fig. 1. We find the static-nucleus
DMC atomization energy to be 7.395ð3Þ eV=atom with a
Slater-Jastrow trial wave function. This is lower than the
DMC result of 7.464ð10Þ eV=atom reported in Ref. [49].
Most of this disagreement arises from the use of different
pseudopotentials in the two works (see the Supplemental
Material [33]). The DFT-PBE phonon zero-point energy
(ZPE) of MLG was calculated using the method of finite
displacements in a 6 × 6 supercell [50] and found to be
0.165 eV=atom. The ZPE is a correction to be subtracted
from the static-nucleus atomization energy. In principle, an
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accurate first-principles atomization energy for graphene
could be used to estimate the BE of graphite by taking the
difference of the experimental atomization energy of
graphite [7.371ð5Þ eV=atom [51] ] and the ZPE-corrected
atomization energy of MLG. However, the spread of DFT
atomization energies resulting from different choices of
pseudopotential (of an order 40–70 meV=atom [33])
implies that first-principles pseudopotential calculations
cannot currently be used to calculate the BE of graphite
by this approach.
Despite a great deal of theoretical and experimental work,

the BE of graphene layers remains poorly understood. The
cleavage energy of graphite has been measured to be
43ð5Þ meV=atom [14], the BE to be 35ð10Þ meV=atom
[52], and the exfoliation energy to be 52ð5Þ meV=atom [53].
More recent experimental work has found the cleavage
energy to be 31ð2Þ meV=atom [54]. It has been suggested
that the latter result may be substantially underestimated
because the experimental data were analyzed using a
Lennard-Jones potential, which gives qualitatively incorrect
interlayer BEs at large separation [55]. Similar difficulties of
interpretationmay affect the other experimental results in the
literature. The results obtained in these works are widely
scattered. The DMC method has previously been applied to
calculate the BEs of AB-and AA-stacked graphite [56,57],
which were found to be 56(5) and 36ð1Þ meV=atom,
respectively, although these calculations were performed
in relatively small simulation supercells, and finite-size
effects may limit the accuracy of the results obtained.
For BLG, we restrict our attention to the nonretarded

regime [58], in which the BE is simply the difference
between the nonrelativistic total energy per atom in the
monolayer and the bilayer. We used vdW-DF layer sepa-
rations of d ¼ 3.495 Å and 3.384 Å [60] for the AA-and
AB-stacked configurations, respectively. In Fig. 2 we plot
the twist-averaged BEs of AA-and AB-stacked BLG as a

function of system size. Non-twist-averaged BEs are shown
in the inset to Fig. 2 and, as expected, show large
oscillations due to momentum-quantization effects. For
widely separated graphene layers with nonoverlapping
charge densities, single-particle finite-size errors cancel
perfectly when the BE is calculated. However, when the
layers are closer together, the cancellation is no longer
perfect. In practice, near the equilibrium separation, the
single-particle errors in the BE correlate closely with the
single-particle errors in the total energy of BLG. To
evaluate the BE in the thermodynamic limit, we twist
averaged the BE using Eq. (1), with the BE per atom in
place of EðNP;ksÞ and the DFT-LDA total energy per atom
of BLG in place of ELDAðNP;ksÞ. We then extrapolated the
twist-averaged BE to infinite system size using Eq. (2). As
shown in Fig. 2, the BE of AB-stacked BLG is larger than
that of AA-stacked BLG, confirming that the former is the
more stable structure.
The area of a simulation cell with NP unit cells is

A ¼ ffiffiffi

3
p

NPa2=2, where a is the lattice parameter of gra-
phene. If we define the linear size L of the cell via πL2 ¼ A,
then we may express the twist-averaged BE per atom as
ĒbindðLÞ ¼ Ebindð∞Þ þ c0L−5=2, where c0 is −0.31ð5Þ and
−0.43ð5Þ eVÅ5=2 for the AA-and AB-stacked geometries,
respectively. The BE is reduced at small supercell sizes L.
The use of a finite supercell crudely models the situation
where theCoulomb interaction between electrons is screened
by a metallic substrate. Hence, a metallic substrate is
expected to weaken the binding of BLG.
In Fig. 3 we plot the BE of AB-stacked BLG against the

interlayer separation, as calculated using DFT, DFT-D, and
DMC methods. The layer separations we have studied are
not in the asymptotic regime in which the BE falls off as
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FIG. 1 (color online). Twist-averaged (TA) and non-TA atomi-
zation energies of MLG against N−5=4

P as calculated with the
DMC method, where NP is the number of primitive cells in the
simulation supercell.
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FIG. 2 (color online). Twist-averaged (TA) BLG BE against
N−5=4

P as calculated with the DMC method, where NP is the
number of primitive cells in the simulation supercell. The inset
shows non-twist-averaged BEs. The layer separations are the
vdW-DF [60] equilibrium values of 3.495 and 3.384 Å for the
AA-and AB-stacked structures, respectively.
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d−3, where d is the interlayer separation [61]. We have
fitted the function EbindðdÞ ¼ A4d−4 þ A8d−8 þ A12d−12 þ
A16d−16 to our DMC BE data, where the fAig are fitting
parameters, which we find to be A4 ¼ −2.9 × 103 meVÅ4,
A8 ¼ −2.97 × 105 meVÅ8, A12 ¼ 6.18 × 107 meVÅ12,
and A16 ¼ −1.63 × 109 meVÅ16. This function fits the
DMC data well, with a χ2 value of 0.007 per data point. The
BE found at the minimum of the fitting curve is
17.8ð8Þ meV=atom at the equilibrium separation of
3.43(4) Å. Although the separation that minimizes our
fitted BE curve for AB-stacked BLG is somewhat larger
than the separation used in our calculation of the BE
reported in Table I, the difference between the BEs is not
statistically significant. The Tkatchenko-Scheffler [4]
DFT-D scheme shows roughly the same equilibrium
separation as the DMC data, but the magnitude of the

BE is substantially larger. In general, the three DFT-D
methods studied [4,62,63] disagree with each other and
with the DMC results. Indeed, the magnitude of the BE (if
not the shape of the BE curve) is best described by the
LDA. Our fitted BE curve enables us to calculate the out-
of-plane zone-center optical phonon frequency ωZO0 of
AB-stacked BLG [64]. A comparison of ωZO0 frequencies
obtained by DFT, DMC calculations, and experiments [65]
is shown in Table II. Our DFT-LDA frequency is in
reasonable agreement with the result (76.8 cm−1) reported
in Ref. [66]. The difference between the ωZO0 frequency
predicted by our fit to our DMC data and the experimental
result is negligible [3ð7Þ cm−1] [33].
In summary, we have used the DMC method to deter-

mine the BE of BLG. Our approach includes a full first-
principles treatment of vdW interactions. We have found
the static-nucleus atomization energy of MLG to be
7.395ð3Þ eV=atom, although the uncertainty in this result
due to the use of nonlocal pseudopotentials may be as much
as 70 meV=atom [33]. We have found the BEs of AA-and
AB-stacked BLG near their equilibrium separations to be
11.5(9) and 17.7ð9Þ meV=atom, respectively. Our results
indicate that current DFT-D and vdW-DF methods signifi-
cantly overbind 2D materials.
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