
Monopole Excitations of a Harmonically Trapped One-Dimensional Bose Gas
from the Ideal Gas to the Tonks-Girardeau Regime

S. Choi,1 V. Dunjko,1 Z. D. Zhang,2,1 and M. Olshanii1
1Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA

2Department of Physics and Astronomy, SUNY, Stony Brook, New York 11794, USA
(Received 21 December 2014; revised manuscript received 18 August 2015; published 10 September 2015)

Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)—where the conventional
chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger’s exact
solution—we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We
find that our method accurately reproduces the results of a recent experimental study [E. Haller et al.,
Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-
field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While
the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-
dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is
shown to treat all these regimes within a single numerical method.
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The study of excitations of a material allows us to
understand its underlying nature and forms the basis of
various spectroscopic methods. In particular, collective
excitations of ultracold atoms provide a way to infer their
character, including the nature of their interatomic inter-
actions. The goal of this Letter is to simulate the monopole
oscillations for a Bose gas in a one-dimensional (1D)
harmonic oscillator (HO) potential for all range of inter-
action strengths to demonstrate the continuous transition
from the bosonic ideal gas and mean-field regimes at weak
interaction to the fermionic strongly correlated limit at large
interaction strength. A number of experiments on the
excitations of 1D Bose gas exist [1–3], and yet a unified
theoretical description over all interaction regimes has not
been available.
Previous work by various authors in describing 1D

Bose gas all have involved either some form of non-
linear Schrödinger equation (NLSE) or the equivalent
hydrodynamic formulation which are intimately connected
via the Madelung transformation as we discuss below.
It is found that these have generally been fragmented in
terms of the applicable range of interactions. For weakly
interacting 1D Bose gas, the 1D Gross-Pitaevskii equation
(GPE) applies, with the coupling constant given by
g1D¼−ð2ℏ2=ma1DÞ, where a1D¼ð−a2⊥=2aÞ½1−Cða=a⊥Þ�
is the 1D scattering length (negative for repulsive 3D
interactions and weak transverse confinement, i.e., for
0 < a < Ca⊥), a⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ℏ=mω⊥
p

is the size of the trans-
verse ground state wave function, ω⊥ is the frequency of
the transverse confinement, C≡ −ζð1=2Þ ¼ 1.4603;…,
and ζðzÞ is Riemann’s zeta function [4]. The above
expression takes into account a possibility of a virtual
excitation of higher modes in the confining direction at the
moment of a two-body collision. For the case when the

mean-field potential becomes comparable to the transverse
excitation quanta, Salasnich et al. [5] derive a cubic NLSE
that includes the effect of “spilling” of the transverse
component of the 3D GPE wave function to higher trans-
verse modes. It is found that the resulting equation can
describe both the weakly interacting mean field and
strongly interacting high density Thomas-Fermi (TF) 1D
bosons, but not the strongly interacting low atom density
Tonks-Girardeau (TG) regime. For the TG regime where
interacting impenetrable bosons in 1D behave as non-
interacting fermions, a higher nonlinearity than the usual
cubic one of GPE is required, and Kolomeisky et al. [6]
derive a NLSE that includes quintic nonlinearity. It is
notable that Minguzzi et al. [7] derived from the quintic
NLSE of Kolomeisky et al. [6] Landau’s hydrodynamic
equation that matches the well-known result for noninter-
acting Fermi gas in the hydrodynamic regime [8].
In general, the hydrodynamic equations were found to

work beyond the mean field [9,10], including the TG
regime [11]. The hydrodynamic equations are

∂
∂t nþ ∇ðvnÞ ¼ 0; ð1Þ

m
∂
∂t v þ ∇

�
μþ VextðrÞ þ

1

2
mv2

�
¼ 0; ð2Þ

where n is the density of gas, v is the velocity field, μ ¼
μl½nðr; tÞ� is the local density-dependent chemical potential,
μl is the chemical potential calculated for a uniform gas at
density nðr; tÞ, and VextðrÞ is the external confining
potential. The hydrodynamic equations involve the local
density approximation (LDA) that corresponds to the case
of zero temperature, large N limit, and “macroscopic”
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dynamics where length scales are much larger than both the
interparticle distance and the healing length. These
conditions, although they superficially appear strict,
are found to be not too difficult to meet in practice. We
point out here that the connection between the hydro-
dynamic equations and NLSE is well established [12,13].
In going from NLSE to the equivalent hydrodynamic
formulation, an additional quantum pressure term,
∇½−ðℏ2=2m

ffiffiffi
n

p Þ∇2
ffiffiffi
n

p �, is necessarily introduced in
Eq. (2). For sufficiently smooth density distributions, such
a quantum pressure term is inconsequential on length scales
that are much larger than the characteristic microscopic
length scales of the problem (such as the healing length, or
mean interparticle separation), and the NLSE and the
hydrodynamic equations are practically and computation-
ally equivalent in such cases.
Some of us [14] used the hydrodynamic equations to study

the stationary state of 1D Bose gas in HO potential from the
mean field to the TG regimes via the calculation of required
chemical potential encompassing all regimes of quantum
correlations. In order to find the chemical potential, the Lieb-
LinigerHamiltonianwith zero range 1D repulsive potentials,
Ĥ ¼ −ðℏ2=2mÞPN

i¼1ð∂2=∂zi2Þ þ g1D
P

N
i<j δðzi − zjÞ, was

used to calculate the chemical potential for this system using
μl ¼ ∂½nϵðnÞ�=∂n where the energy per particle ϵðnÞ ¼
ℏ2n2e(γðnÞ)=2m comes from solving the Lieb-Liniger
system of equations that arises from applying the Bethe
ansatz [15]. Here, γðnÞ is the dimensionless Lieb-Liniger
interaction parameter proportional to the interaction strength,
g1D: γðnÞ ¼ 2=nja1Dj.
Öberg and Santos [16] and Pedri et al. [17] extended

Ref. [14] to study the free expansion of 1D Bose gas when
the harmonic trap is released, by converting the hydro-
dynamic equations to a NLSE via the inverse Madelung
transform [12,13]. The work of Ref. [16] was limited
to a narrow interaction regime between TF and TG, as
characterized by the interaction parameter η ¼ n0TFja1Dj ≈ 1

where n0TF ¼ ½ð9=64ÞN2ja1Dj=a4z �1=3 is TF density with
az ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
. In addition, owing to the specific form of

the ansatz for their wave function, it is not a priori obvious
whether the work may be extended beyond free expansion
that they studied. Indeed, more sophisticated experiment
beyond free expansion, in particular, that of measuring the
monopole oscillation frequency from the mean field to the
TG regime, has been performed [2], where the interaction of
8–25 ultracold Cs atoms trapped in an effectively 1D
harmonic trap was tuned via the Feshbach resonance while
measuring the change in the ratio of the oscillation frequen-
cies of the collective compression (ωC) and dipole (ωD)
modes, R ¼ ðωC=ωDÞ2, the change of which provides the
diagnostics for the crossover between different regimes.
So far the experimental regime between TF and TG that

shows the crossover of the oscillation frequency has been
described by the hydrodynamic equations combined with

sum rules [11] which calculate the upper limit to the
excitation based on the static wave functions. The sum rules
method, however, cannot simulate directly the dynamics of
the 1D Bose gas. Very recently, it was shown that a Hartree
approach allows for an accurate description of Gaussian
Bose-Einstein condensate to TF regimes and is shown to
join smoothly to the crossover from TF to TG described
using LDA for the cases involving more than 25 particles
[18]. It is further shown that ab initio diffusionMonte Carlo
calculations provide a complete all-regimes data for the
cases involving less than 25 atoms.
These limitations are expected to be overcome in time

with, for instance, improved numerical methods and more
powerful computers. In this Letter, we show how we
overcame these limitations using the modified NLSE
(MNLSE) by the inverse Madelung transform, starting
with the hydrodynamic equations and adding in the
quantum pressure term as we discussed above for math-
ematical consistency. To obtain MNLSE, the standard
NLSE nonlinear term g1DjΨðr; tÞj2Ψðr; tÞ is replaced by
μðn¼jΨðr;tÞj2ÞΨðr;tÞ. Working with a wave function
ψðr; tÞ ¼ N−1=2Ψðr; tÞ normalized to unity,

Rþ∞
−∞ jψ j2dz ¼

1, and, accordingly, with a probability distribution
~n ¼ n=N ¼ jψ j2 and the external potential given by a
one-dimensional harmonic potential VextðrÞ ¼ 1

2
mω2

zz2,
the modified MNLSE in the harmonic oscillator system
of units, ℏ ¼ m ¼ ω ¼ 1, is

i
∂ψðzÞ
∂t ¼

�
−
1

2

∂2

∂z2 þ
1

2
z2 þ μ½ ~nðz; tÞ�

�
ψðzÞ; ð3Þ

where the chemical potential is given by μ½ ~nðz; tÞ� ¼
ðN2=2Þ ~n2½3þ ~nð∂=∂ ~nÞ�e½γðn ¼ N ~nÞ�, calculated numeri-
cally from the Lieb-Liniger system of equations [15] at
each spatiotemporal step as ~nðz; tÞ evolves. We note that
these equations have indeed been obtained earlier [16]. In
terms of the validity of the MNLSE, from the mathematical
assumptions made, the equation should be valid for all
situations where both the LDA and the Lieb-Liniger theory
hold. It is noted additionally that throughout the whole
range of the interaction strength, the quantum pressure
term is either exact (as in the ideal gas and in the GPE
regimes, the regime of no interactions, and the regime of
weak but non-negligible interactions, the latter thanks
to the presence of Bose-Einstein condensate) or negligible
(as in the Tonks-Girardeau regime, the regime of strong
interactions).
We note that in the mean-field limit of na1D ≫ 1, γ → 0

leading to the well-known TF energy functional; there, the
chemical potential is given by μðnÞ ≈ g1Dn ¼ γℏ2n2=m. In
the TG limit of na1D ≪ 1 where γ → ∞, the chemical
potential is μðnÞ ≈ π2ℏ2n2=2m. In between the TF and TG
limits the chemical potential has to be worked out numeri-
cally. For comparison with experiments, it is convenient to
define the effective γ instead of γðnÞ via the maximum
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steady state density of the atomic cloud at z ¼ 0 in the TG
limit and the actual a1D,

γeff ¼
2

nTGð0Þja1Dj
¼ π

α
;

where nTGð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nmωz=ℏ

p
=π is the analytical

TG density in the center of the trap [14], and for
convenience we defined the dimensionless parameter α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmωz=2ℏ

p ja1Dj that parametrizes the regimes of inter-
action strength. This naturally introduces a set of γ
independent of the density profile, and we shall use γeff
as our parameter in our simulation.
The simulation was done by first finding the ground state

solution for various values of α starting from the ground
state for a HO, i.e., zero effective chemical potential
μ½ ~nðz; tÞ� in Eq. (3) withN ¼ 0 and adiabatically increasing
N up to the desired number of atoms. The idea follows from
the well-known quantum mechanical theorem on adiabatic
following [19], which is the limiting case of the Landau-
Zenner transition with zero transition probability such that
a system remains in the state that evolves from the initial
state in the limit of infinitely slow evolution of the time-
dependent Hamiltonian. This turned out to be a crucial
numerical step since the strong nonlinearity makes the
direct numerical solution to the ground state, i.e., not via
some kind of variational ansatz, difficult. In this case, the
imaginary time evolution or the damping method [20] to
obtain the ground state was also found to run into
convergence problems, possibly due to the highly nonlinear
energy landscape. The fact that the adiabatic following
method works well indicates that MNLSE may be applied
to simulations involving general trapping potential other
than harmonic, as long as the corresponding noninteracting
ground state is known.
Once the steady state solutions are found, the monopole

excitation can then be simulated in many different ways,
including an addition by hand of the exact Bogoliubov
excitation modes or sinusoidal driving of the confining
potential. In this Letter, we directly excite monopole oscil-
lations by suddenly quenching the confining potential, from
VðzÞ ¼ 1

2
mω2

zz2 to VðzÞ ¼ 1.25 × 1
2
mω2

zz2 for some short
time (τ ¼ 0.25π=ωz) then back in the original trap frequency.
The simulation was then run until τ ¼ 400π=ωz while
measuring the time-dependent width (variance) of the wave
function, hΔz2i ¼ R

z2jψðz; tÞj2dz − ½R zjψðz; tÞj2dz�2. It
was found that except for a short transient, the width
hΔz2i follows a sinusoidal variation over time, owing to
the harmonic confining potential. From this sinusoidally
varying time-dependent width, the Fourier frequency com-
ponents were obtained numerically.
We plot in Fig. 1 the steady state density nssðzÞ with

atom number N ¼ 25 for γeff ≈ 0.01, 1, and γeff → ∞
and the corresponding chemical potential μðzÞ. The

position-dependent chemical potential gives an idea of the
effective potential experienced by the wave function due to
interatomic interaction. This function was found to almost
vanish for γeff < 1, leaving an effectively interaction-
free system of atoms. We also plot the steady state
harmonic oscillator energy EHO ¼ R

ψ�ðzÞ½− 1
2
ð∂2=∂z2Þþ

1
2
z2�ψðzÞdz, interaction energy EI ¼

R
ψ�ðzÞμðzÞψðzÞdz,

and the total energy EK þ EI as a function of log10 γeff .
Additionally, we plot as a function of log10 γeff the initial,
maximum, and minimum width of the wave function hΔz2i
attained during the monopole oscillation. It is not surprising
that the initial width of thewave function follows the trend of
the total energy of the system as a function of γeff since the
increasing repulsion between the atoms makes the wave
function profile wider. The amplitude of oscillation is seen to
also grow as a function of γeff ; however, taking into account
the change in the initial width itself, the oscillation amplitude
remains constant at approximately 20% of the initial width
regardless of γeff .
Our numerical simulation parameters arewithin the range

of experimental parameters: we cover the same range of
γeff as in the experiment andweuseN ¼ 25. In Fig. 2we plot
the experimentally measured frequencies ðωC=ωDÞ2 with
error bars as a function of γeff and superpose the results from
our simulation as well as the prediction. The near-ideal gas
region corresponds to the frequency interval from
ðωC=ωDÞ2 ≈ 4 to 3. The point ðωC=ωDÞ2 ≈ 3 (γ ≈ 1) is
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FIG. 1 (color online). Top left panel: plot of the steady state
density nssðzÞ ¼ jψðzÞj2 vs z with atom number N ¼ 25 for
γeff ≈ 0.01 (dotted line), 1 (dashed line), and γeff → ∞ (solid
line). Top right panel: the corresponding chemical potential μðzÞ.
It is noted that μðzÞ for γeff ≈ 0.01 (dotted line) is vanishingly
small. Bottom left panel: plot of the harmonic oscillator energy
EHO (solid line), interaction energy EI (dashed line), and the total
energyEK þ EI (dotted line) as defined in the text as a function of
log10 γeff . Bottom right panel: the initial width of the wave
function hΔz2i (dotted line), minimum hΔz2i (dashed line), and
maximum hΔz2i (solid line) attained during the monopole
oscillation as a function of log10 γeff . The harmonic oscillator
units are used throughout.
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the mean-field TF point. For higher γeff, the system slowly
approaches a TG plateau of ðωC=ωDÞ2 ≈ 2. The sum rule
formula of Ref. [11], which was built using hydrodynamic
equations, works well in both mean-field TF and in the TG
regimes, but naturally fails for the near-ideal gas. Our
approach, however, captures it. The difference may be
understood from the fact that the effect of the quantum
pressure term added in deriving the MNLSE becomes more
significant in the regime of weak interactions.
We note that the sum rules do not necessarily require

LDA; the only calculation available for meaningful com-
parison, Ref. [11], just happens to be built on LDA as they
were more interested in the γ → ∞ region. Granted, our
method is more than a naive interpolation between the
standard NLSE at weak interactions and the LDA at
the strong ones, since there exists a parameter region—
the mean-field TF regime—of overlapping ranges of
validity of the above methods. Note that while at the ideal
gas point and in the subsequent mean-field regime, the
MNLSE correctly describes the density evolution at all
length scales; in the strongly correlated regime, the
MNLSE must be regarded merely as a simulator for the
time-dependent LDA equations which is convenient since
one does not have to simultaneously track the velocity field
and the density—it suffices to track a single wave function,
and any features of a healing length size or smaller must be
treated as artifacts of the computational method. This

question is discussed in Ref. [21]: it is shown, in particular,
that the interference fringes produced by the MNLSE in the
TG regime [6] have nothing to do with reality.
In conclusion, we found that using a single MNLSE one

can consistently simulate the 1DBose gas in the full spectrum
of interaction regimes. Besides being numerically tractable
(e.g., the sharp edges of the atomic clouds are automatically
regularized), theMNLSE offers the following benefit: at very
low densities, where the size of the cloud becomes compa-
rable to the size of the one-body quantum ground state of the
trap, the time-dependent LDA fails while the standard NLSE
is naturally valid there, but this is exactly what the MNLSE
converts to and so MNLSE is able to capture the system’s
behavior at very low values of the interaction strength. This
allows for a formal numerical unificationof the standard time-
dependent NLSE that is valid in the ideal gas limit and in the
neighboring mean-field regime (both before the validity of
the TF approximation and in the TF regime) and the time-
dependentLDA that is valid for themean-fieldTF regime,TG
regime, and in between.
The MNLSE bridges the gap between existing previous

work from Refs. [4–6,11,14], and [16], each of which has
restricted range of applicability. Also, unlike Refs. [11] and
[14], the dynamics canbe simulated directly. The numerically
intensive diffusion Monte Carlo method reported very
recently can simulate over all interaction regimes but is
restricted to small number of atoms [18]. Furthermore, the
adiabatic following method for the ground state preparation
implies potential for application of MNLSE to a broad range
of future research. On the other hand, we reiterate that there
are certain obvious limitations of theMNLSE-hydrodynamic
approach such as that discussed by Girardeau and Wright in
Ref. [21], which have to dowith phenomena at healing length
scales.
In general, one may safely apply the MNLSE wherever

the LDA holds; many experimental situations involving
large amplitude motion, such as problems in quantum
transport, should satisfy the LDA and, hence, render the
MNLSE a fully valid theoretical model. Although the range
of validity of MNLSE is clear from considering the
underlying mathematical assumptions, it is also possible
that, just as GPE with its theoretically narrow range of
applicability (zero temperature, mean field) found wide
applications, the MNLSE may have a broader applicability
than expected [22]. In this sense, more experiments are
needed to be done and compared with our MNLSE to
establish the range of validity. On a more fundamental
level, since MNLSE is a numerical tool for simulating the
hydrodynamic equations, future research should involve
careful examination of the validity of the hydrodynamic
equations themselves, along the lines of Refs. [23,24].
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FIG. 2 (color online). Plot of the monopole oscillation fre-
quency squared ðωC=ωDÞ2 as a function of γeff ¼ 2π=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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is not expected to match the experiment since it has been built on
the hydrodynamic equations a priori. The difference may be
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