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Using ab initio lattice methods, we calculate the finite temperature thermodynamics of homogeneous two-
dimensional spin-1=2 fermions with attractive short-range interactions. We present results for the density,
pressure, compressibility, and quantum anomaly (i.e., Tan’s contact) for a wide range of temperatures
(mostly above the superfluid phase, including the pseudogap regime) and coupling strengths, focusing on the
unpolarized case. Within our statistical and systematic uncertainties, our prediction for the density equation
of state differs quantitatively from the prediction by Luttinger-Ward theory in the strongly coupled region of
parameter space, but otherwise agrees well with it. We also compare our calculations with the second- and
third-order virial expansion, with which they are in excellent agreement in the low-fugacity regime.
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Introduction.—Quantum mechanics in two spatial
dimensions (2D) is a fascinating playground for under-
standing fundamental physics in a wide variety of situa-
tions. It represents a necessary (though often odd) crossover
between the integrable systems that live in one spatial
dimension (1D) and their much more challenging 3D
counterparts. Interest in 2D ranges from basic theory and
experiment to marketable technological applications.
Among the most salient features and systems in 2D, we
have the peculiar behavior of Berezinskii-Kosterlitz-
Thouless (BKT) phase transitions [1], the possibility of
understanding quark confinement analytically [2], anoma-
lous scale invariance in nonrelativistic systems [3], the
challenge of high-temperature superconductors [4], and, of
course, graphene [5].
In recent years, experiments with ultracold atoms [6,7]

have made clear progress towards a clean and systematic
study of fermionic atom clouds in constrained or modulated
optical traps, which closely resemble a 2D situation. These
have been of singular interest due to their malleability: the
interatomic interaction can be tuned essentially at will, low-
temperature degenerate regimes can be reached, spin- and
mass-asymmetric systems can be studied, and so on, as we
briefly summarize next. Early observation of 2D systems
was reported in Refs. [8,9]; radio frequency spectroscopy
studies were carried out in Refs. [10,11]; the crossover from
2D to 3D was studied in Refs. [12,13] (see also Ref. [14]);
the behavior of polarons was reported in Ref. [15]; the
density distribution in a trap was shown in Ref. [16]; the
viscosity was measured in Ref. [17]; and the contact was
reported in Ref. [18]. More recently, the criterion for 2D
dynamics was scrutinized in Ref. [19]; the pressure was
measured in Ref. [20]; polarized systems were studied in
Ref. [21]; and pair condensation and the BKT transition
were observed in Refs. [22,23] (see also Ref. [24]).
As advances have thus been made towards understand-

ing the thermodynamics, structure, and phases on the

experimental side, theorists are once again faced with
the challenge of strongly coupled regimes, which defy
analytic approaches. Previous theoretical studies have
characterized the crossover between Bose-Einstein con-
densation (BEC) and the Bardeen-Cooper-Schrieffer (BCS)
pairing in 2D via mean-field analyses [25–27]. The first
determination of the ground-state equation of state, how-
ever, appeared relatively recently in Ref. [28], which used
the diffusion quantum Monte Carlo method. Even more
recently, Ref. [29] performed an auxiliary-field quantum
Monte Carlo study of the ground state where the pressure,
contact, and condensate fraction were determined. At finite
temperature, the equation of state (EOS) was first computed
in the virial expansion in Ref. [30], and in the Luttinger-
Ward approach in Ref. [31]. Pair correlations were inves-
tigated using the virial expansion at about the same time in
Refs. [32,33] (the latter of which also analyzed Tan’s
contact). Collective modes were studied in Refs. [34–36],
and the shear viscosity and spin diffusion in Ref. [37].
In this Letter, we offer a few essential pieces of the

thermodynamic puzzle of attractively interacting fermions
in 2D. We implement a lattice Monte Carlo (LMC) method
to calculate the thermal and short-range correlation proper-
ties of the system along the 2D analogue of the BCS-BEC
crossover. Specifically, we determine the density EOS,
from which we extract the pressure and compressibility; all
of these are experimentally measurable. To our knowledge,
the present is the first fully nonperturbative, ab initio
calculation of the EOS of this system at finite temperature,
in particular covering the nonsuperfluid phase and pseu-
dogap regime above the BKT transition. We also present
here the first calculation of Tan’s contact parameter [38–41]
at finite temperature in 2D that is free of uncontrolled
approximations.
Hamiltonian and many-body method.—The dynamics of

dilute spin-1=2 nonrelativistic fermions with short-range
interactions is governed by a Hamiltonian,
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where ψ̂†

s ; ψ̂ s are the creation and annihilation operators in
coordinate space for spin s particles, and n̂s ¼ ψ̂†

s ψ̂ s are the
corresponding densities.
Recently [42], we performed a study similar to the one

presented here, but in 1D. Here, we used the same methods
(closely related to those that Refs. [43–45] used in 3D) but
applied them in 2D. We placed the spin-1=2 fermions in a
Euclidean spacetime lattice of extent N2

x × Nτ with (anti-)
periodic boundary conditions in space (time). A Trotter-
Suzuki factorization followed by a Hubbard-Stratonovich
transformation [46] allowed us to write the grand-canonical
partition function as a path integral over an auxiliary field.
That integral was evaluated using Metropolis-based LMC
methods (see, e.g., Refs. [47,48]). We use units such that
ℏ ¼ m ¼ kB ¼ 1, wherem is the mass of the fermions. The
physical spatial extent of the lattice is L × L, where L ¼
Nxl and we take l ¼ 1 to set the length and momentum
scales. The extent of the temporal lattice is set by the inverse
temperature β ¼ 1=T ¼ τNτ. The time step τ ¼ 0.05 (in
lattice units) was chosen to balance temporal discretization
effects with computational efficiency; in any case, those
discretization effects are smaller than the statistical ones.
As in our previous study, the physical input parameters

are the inverse temperature β, the chemical potential
μ ¼ μ↑ ¼ μ↓, and the (bare, attractive) coupling g > 0,
which determines the binding energy εB of the two-body
problem (see below). We then form two dimensionless
quantities: the fugacity z ¼ expðβμÞ and the dimensionless
coupling strength βεB. Using z and βεB as parameters
facilitates comparisons with experiments, as well as with
other theoretical approaches such as the Luttinger-Ward
calculations mentioned above. For certain purposes below,
we also use the scattering length a2D as a scale, defined by
εB¼ℏ2=ðma22DÞ, and also the Fermi energy εF ¼ k2F=ð2mÞ,
where kF ¼ ffiffiffiffiffiffiffiffi

2πn
p

and n is the total density.
The 2D casewe consider here, in contrast to its 1D and 3D

analogues, is peculiar due to its anomalous scale invariance
(see e.g. Ref. [49]). Indeed, the dimensions of ψ̂ s are of
inverse length [in the natural units mentioned above; see
Eq. (1)], such thatg is dimensionless and therefore the system
is classically (i.e., before accounting for quantum fluctua-
tions) scale invariant. The appearance of a two-body bound
state with binding energy εB for g > 0 is an example of a
quantumanomaly: the classical scale invariance is brokenby
quantum effects. Notably, massless quantum chromody-
namics in 3D, also a scale-free theory at the classical level,
displays a similar feature. The anomaly in the present system
is measured by the value of Tan’s contact [3].
Our calculations are exact up to statistical and systematic

uncertainties. To address the former, we took 1000 decorre-
lated samples for each data point in the plots shown below,
which yields a statistical uncertainty on the order of 3%. The

smoothness of our results show that those effects are indeed
small. To address the systematic effects, one must approach
the continuum limit. Two-dimensional problems are com-
putationally inexpensive relative to full 3D problems, but
they are still challenging. Therefore, in this first study we
restricted ourselves toNx ¼ 11; 15; 19. The continuum limit
is achieved by lowering the density while remaining in the
thermodynamic regime. In turn, this is accomplished by
increasing the lattice parameter β, ensuring that the thermal
wavelength λT ¼ ffiffiffiffiffiffiffiffi

2πβ
p

satisfies l ≪ λT ≪ L; at fixed z,
this reduces the density. We used λT ≃ 8.0, which is well
within said regime. We then studied whether our results
collapse to a universal curve when β and g are varied while
βεB is held fixed. Lattice sizes larger than Nx ¼ 19 are
computationally more expensive but not impractical; we
chose to fix that size and cover a wider region of parameter
space instead. Because our study proceeded at constant βεB,
increasing β implies reducing g, which results in smaller
uncertainties associated with the temporal lattice spacing τ;
these are expected to be on the order of 1% to 2% (see,
e.g., Ref. [44]).
Analysis and results.—To characterize the thermody-

namics of a strongly interacting system, as is our objective
here, a simple yet extremely effective route is to first
calculate the total particle number density n ¼ N=L2

(where N ¼ N↑ þ N↓ and Ns is the particle number for
spin s ¼ ↑;↓) as a function of the thermodynamic variables
(temperature, chemical potential, and interaction strength,
as mentioned above). The density has the added benefit over
other quantities that its statistical-noise effects in a LMC
calculation are relatively small. From n, one may determine
the pressure P by performing a numerical integration along
βμ, and the compressibility κ by differentiation.
In Fig. 1 we show the density n as a function of the

dimensionless parameters z and βεB, defined above. The
noninteracting result used as a scale in that figure is
n0λ2T ¼ 4I1ðzÞ, where I1ðzÞ ¼ zdI0ðzÞ=dz, and

I0ðzÞ ¼
Z

∞

0

dxx lnð1þ ze−x
2Þ: ð2Þ

Our calculations, shown inFig. 1, display a clear deviation
from the Luttinger-Ward approach of Ref. [31] for −2 ≤
βμ ≤ 2. This is not unexpected, as that regime is challenging
for most many-body approaches: it is where quantum
fluctuations are strongest (at a fixed βεB). Away from that
region, however, the agreementwithRef. [31] is satisfactory.
Both calculations seem to heal together to the virial expan-
sion result in the regimeof large andnegativeβμ. The starting
point for this expansion is a Taylor expansion of the grand
thermodynamic potential Ω in powers of z,

−βΩ ¼ Q1ðzþ b2z2 þ b3z3 þ � � �Þ; ð3Þ
where Q1 ¼ 2L2=λ2T is the 2D single-particle partition
function and bn are the virial coefficients, which in
general will be functions of the coupling strength βεB.
Thus, the virial expansion for the density reads
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nλ2T=2 ¼ zþ 2b2z2 þ 3b3z3 þ � � �, where the factor of 1=2
on the left-hand side comes from the number of fermion
species. For the system studied here, the second-order
coefficient b2 is known analytically from the exact solution
of the two-body problem (see, e.g., Refs. [32,34]):

b2 ¼ −
1

4
þ eβεB −

Z
∞

0

dy
y

2e−βεBy
2

π2 þ 4ln2y
: ð4Þ

A calculation of b3 can be found in Ref. [32].
To calculate the pressure P, we integrate as follows:

Pλ4T ¼ 2π

Z
βμ

−∞
nλ2TdðβμÞ0; ð5Þ

where we have put everything in dimensionless form using
the thermal wavelength scale. In Fig. 2 we show P, as
obtained from the above formula, in units of the pressure of
the noninteracting system P0λ

4
T ¼ 8πI0ðzÞ. The virial

expansion of Eq. (3) is used in this integration to complete
the approach to the z → 0 limit.
On the other hand, by taking a derivative of n, one

obtains the isothermal compressibility,

κ ¼ β

n2
∂n

∂ðβμÞ
����
β

¼ λ4T
2π

1

ðnλ2TÞ2
∂ðnλ2TÞ
∂ðβμÞ

����
β

: ð6Þ

We report this quantity in Fig. 3, in units of its non-
interacting counterpart κ0, where (in dimensionless form)
κ0λ

−4
T ¼ ð2=πÞðn0λ2TÞ−2I2ðzÞ, and I2ðzÞ ¼ zdI1ðzÞ=dz.
To calculate the contact, we use the grand-canonical

definition (see Refs. [32,39,41])

C≡ 2π

β

∂ðβΩÞ
∂ lnða2D=λTÞ

����
T;μ

: ð7Þ

From here, it is easy to see that the virial expansion for C
takes the form

βC ¼ 2πQ1ðc2z2 þ c3z3 þ � � �Þ; ð8Þ

where cn ¼ −∂bn=∂ lnða2D=λTÞ. Using Eq. (4), it is
straightforward to obtain the exact continuum-limit answer:

c2 ¼ 2βεBeβεB
�
1þ 2

Z
∞

0

dy
ye−βεBðy2þ1Þ

π2 þ 4ln2y

�
: ð9Þ

This result was likely used in Ref. [32], but we have not
found the explicit formula itself anywhere.
In our LMC calculations, we determine the contact via

the expectation value of the interaction energy V̂. Using the
definition of Eq. (7), along with −βΩ ¼ lnZ, where Z is
the grand-canonical partition function, we obtain
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FIG. 2 (color online). Pressure, in units of the noninteracting
pressure P0, of spin-1=2 fermions in 2D for coupling strengths
βεB ¼ 0.1, 0.5, 1, 2, 3 (from bottom to top), as a function of βμ.
The error bars reflect the statistical uncertainty. The long-and
short-dashed lines show the second- and third-order virial
expansion results, respectively.
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FIG. 1 (color online). Density equation of state, in units of the
noninteracting density n0 of spin-1=2 fermions in 2D, for
coupling strengths βεB ¼ 0.1, 0.5, 1, 2, 3 (from bottom to
top), as a function of βμ. The error bars reflect the statistical
uncertainty. The solid colored lines show the Luttinger-Ward
result of Ref. [31]. The long- and short-dashed lines show the
second- and third-order virial expansion results, respectively.
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FIG. 3 (color online). Compressibility, in units of the non-
interacting compressibility κ0, of spin-1=2 fermions in 2D for
coupling strengths βεB ¼ 0.1, 0.5, 1, 2, 3 (from top to bottom), as
a function of βμ. The error bars reflect the difference between a
smooth interpolation and the raw LMC data. The long- and short-
dashed lines show the second-and third-order virial expansion
results, respectively.

PRL 115, 115301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

11 SEPTEMBER 2015

115301-3



C ¼ −2π
β

∂ ln Z
∂ lnða2D=λTÞ ¼ −2πhV̂i ∂ ln g

∂ lnða2D=λTÞ ; ð10Þ

where we used the fact that V̂ is a contact interaction, as in
Eq. (1). The remaining factor on the right is given by the
two-body problem. To turn this into an intensive, dimen-
sionless quantity, we present results in the form C=ðNk2FÞ.
In Fig. 4 we show our LMC results for this quantity as a
function of T=TF and the coupling strength βεB, as well as
selected lines of constant lnðkFa2DÞ. Corresponding to the
latter, we have included ground-state quantumMonte Carlo
(QMC) results [28] and experimental results at a finite
temperature of T=TF ¼ 0.27 [18]. The experimental results
largely agree with our calculations; however, the exper-
imental errors and the maximum coupling calculated limit
us from drawing any strong conclusions. On the other hand,
we note that the contact is largely flat at constant lnðkFa2DÞ,
which agrees qualitatively with the Luttinger-Ward
approach of Ref. [31]. We regard all this as evidence that
the ground-state QMC results (see also Supplemental
Material [50]) are in very good agreement with our
finite-T calculations, as the latter seem to approach the
T ¼ 0 results in that limit.
Our full set of contact calculations as a function of βμ

can be found in the Supplemental Material [50]. We have
also verified there the agreement with the continuum-limit
second-order virial expansion result [using Eq. (9)] in the
high-energy regime. Removing lattice effects in this regime
is most demanding, which suggests that such systematic
effects are well under control.

Summary and conclusions.—Using LMC methods, we
have calculated the finite temperature thermodynamics of
homogeneous two-dimensional spin-1=2 fermions with
attractive short-range interactions. We have presented
results for the density, pressure, compressibility, and
Tan’s contact for a wide range of temperatures (close to
but above the superfluid critical temperature) and coupling
strengths. Within our statistical and systematic uncertain-
ties, our prediction for the density EOS differs from the
prediction by Luttinger-Ward theory in a substantial region
of parameter space. The general agreement is, nonetheless,
exceptional. We have also compared our calculations of the
density and pressure with the second- and third-order virial
expansion, with which they agree remarkably well in the
low-fugacity regime. Moreover, the agreement seems
stronger with our results than with the Luttinger-Ward
approach. Finally, we have presented a comparison of our
calculation of the contact with previous ground-state
calculations and finite temperature experimental data. A
more complete representation of our data for the contact,
including a comparison with the second-order virial
expansion and an alternative temperature scale, appear in
the Supplemental Material [50]. A further comparison of
the pressure with experimental results is also shown there,
as well as a consistency check with other calculations in the
ground state.
Our results for the density and compressibility can also be

compared with experiments. One of the motivations for the
latter is that attractively interacting fermions in 2D are
expected to undergo a BKT transition into a superfluid phase
at low enough temperatures. We do not see, in the quantities
studied here, any particular signature of the transition.
However, we did not expect to see such a signal, either: to
that end, it would be necessary to study the pair correlation
function. We defer such calculations to future work.
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