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We demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet
(XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal
properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser.
Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and
phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters.
Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate
Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility of tailoring the
spectrotemporal content of intense short-wavelength pulses represents the first step towards efficient
nonlinear optics in the XUV to x-ray spectral region and will enable precise manipulation of core-electron
excitations using the methods of coherent quantum control.
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The development of the first high-power pulsed lasers in
the 1960s marks an important milestone in the long-
standing effort to actively control the temporal evolution
of quantum-mechanical systems. However, it was not until
the early 1990s, when ultrashort pulse shaping techniques
became practical, that coherent control of quantum phe-
nomena finally became a reality [1]. Tailoring the spec-
trotemporal content of intense laser pulses in the visible
range opened up countless possibilities for manipulating
the quantum state of matter, with examples ranging from
control of population transfer in optical transitions [2] and
currents in semiconductors [3] to control of chemical
reactions [4] and energy flow in biomolecular complexes
[5], and many others (see, e.g., Ref. [6] and references
therein). Undoubtedly, the ability to shape the spectrotem-
poral content of powerful extreme ultraviolet (XUV) and
x-ray pulses would trigger widespread efforts to extend the
concepts of coherent control into the short-wavelength
regime, leading ultimately to the development of new
methods for probing and manipulating core electrons in
atoms, molecules, and materials. As a more immediate
application, it may find use in numerous advanced spectro-
scopic techniques such as resonant inelastic x-ray scattering
[7] and coherent ultrafast core-hole correlation spectros-
copy, offering unique capabilities for probing elementary
excitations [8].
In the XUV and x-ray spectral regions, free-electron

lasers (FELs) are currently the only devices that can deliver

femtosecond laserlike pulses with peak powers in the
gigawatt range [9–13]. However, the ability to generate
fully coherent pulses and shape their spectrotemporal
content with high stability on a shot-to-shot basis is
extremely challenging, due to the difficulties in precisely
controlling the light generation process. In this Letter we
show that the spectrotemporal content of powerful ultra-
short XUV pulses can be precisely shaped using a laser-
seeded FEL. By tuning the seed laser operating parameters,
we generate intense femtosecond XUV pulses with a
controllable amount of linear frequency chirp, which can
be ultimately reduced to zero. Our results constitute the first
experimental evidence of Fourier limited pulses from an
XUV FEL and pave the way to full spectrotemporal
shaping of powerful ultrafast pulses in the XUV to soft-
x-ray spectral region.
A natural approach towards fully controlling the spec-

trotemporal profile of powerful XUVand x-ray pulses is to
exploit the unique capabilities of a seeded FEL. Whereas in
FELs based on self-amplified spontaneous emission the
amplification is triggered by spontaneous undulator emis-
sion [14], a seeded FEL relies on a coherent input signal.
We employed the high-gain harmonic generation (HGHG)
seeding scheme [15] available at the FERMI FEL [11]. In
HGHG, see Fig. 1, a seed laser is used to imprint a periodic
energy modulation at the seed wavelength λ (typically in
the UV) onto a relativistic electron beam (e beam) in the
modulator. This energy modulation is converted into a
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current density modulation when the e beam interacts with
the magnetic field of the dispersive section. Such a micro-
bunched e beam emits coherent light at λ=n (n integer) in
the XUV to x-ray region as the electrons traverse the
periodic magnetic field of the radiator.
The FEL output at the nth harmonic is driven by the

electron bunching factor [15–17]

bnðtÞ ¼ e−n
2B2=2Jn½−nBAðtÞ�ein½ϕsðtÞþϕeðtÞ�; ð1Þ

where B is the dimensionless strength of the dispersive
section (dispersive strength) [16], Jn is the nth order Bessel
function, and AðtÞ is the time-dependent energy modulation
(normalized to the electron energy spread σE), which is
proportional to the envelope a0ðtÞ of the seed laser electric
field aðtÞ ¼ a0ðtÞ sin ½ω0tþ ϕsðtÞ�, ω0 being the central
frequency. The exponent in the last factor, where
ϕeðtÞ ¼ ðB=σEÞEðtÞ, accounts for the slowly varying
phase of the seed ϕsðtÞ and a possible time-dependent
energy profile EðtÞ imprinted onto the e beam by the linear
accelerator (linac), which produces the relativistic
electrons.
As the microbunched e beam is injected into the radiator

it starts emitting coherent light. Initially the e beam is rigid
and the FEL electric field is directly proportional to the
bunching factor in Eq. (1). In the linear regime (before
saturation) [14,18,19], the field envelope is preserved
despite amplification in the radiator, as demonstrated in
the following. However, a small additional phase ϕaðtÞ is
introduced [20–22], so that the total FEL phase becomes

ϕðtÞFEL ¼ n½ϕsðtÞ þ ϕeðtÞ� þ ϕaðtÞ: ð2Þ

The above equations provide the basis for FEL pulse
shaping through the manipulation of the seed envelope
a0ðtÞ and phase ϕsðtÞ.

Both the e-beam time-dependent energy profile and the
phase developed during amplification affect the pulse
properties [16,20–22]. However, as we show in the follow-
ing, these effects can be fully compensated for by properly
tuning the temporal phase of the seed laser. For the cases
considered here, it suffices to expand each of the individual
phase contributions ϕsðtÞ, ϕeðtÞ, and ϕaðtÞ into a power
series in time up to the second order. While a linear-term
coefficient dϕðtÞ=dt results in an absolute frequency
(wavelength) shift [23], a quadratic-term coefficient
d2ϕðtÞ=dt2, called the chirp rate, gives rise to a linear
frequency chirp in the pulse [17]. A suitable seed laser
chirp can then be used to counter the combined effects due
to the e-beam quadratic energy curvature and the chirp
developed during amplification.
Figure 2 highlights how the spectrotemporal content of

FEL light can be shaped by tuning the operating param-
eters. First, Fig. 2(a), the bunching envelope, generated
here by a Gaussian seed, can be modified by changing the
strength B of the dispersive section. With increasing B, the
bunching develops modulations as a function of time
[Eq. (1)] due to the process of electron overbunching
and rebunching [24,25], leading to a pulsed structure. As
emphasized above, the FEL pulse temporal shape directly
corresponds to the bunching envelope. Second, manipu-
lating the FEL temporal phase using a chirped seed,
Fig. 2(b), leads to a drastic modification of the FEL
spectral content; see Fig. 2(c). While the spectral map
(spectrum versus B) of a significantly chirped FEL pulse
directly corresponds to its temporal map [26,27], a Fourier
limited pulse with a flat temporal phase shows a distinc-
tively different spectral signature (see Supplemental
Material for intermediate cases [28]).
In the following we experimentally verify the above

predictions and demonstrate the power of the HGHG
scheme in controlling the spectrotemporal content of

FIG. 1 (color online). The high-gain harmonic generation scheme. After interacting with the seed laser in the first undulator
(modulator) and with the magnetic field of the dispersive section, the relativistic e beam develops periodic density modulations
(bunching) at harmonics of the seed wavelength. The microbunched e beam is then injected into the second undulator (radiator), whose
periodic magnetic field forces the electrons to emit coherent and powerful light pulses in the XUV or soft-x-ray region. The
spectrotemporal properties of radiation are controlled by manipulating the seed laser electric field.
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intense XUV pulses. Figure 3(a) shows the experimental
spectral map, when the relatively high positive frequency
chirp on the FEL, dominated by the positive chirp due to a
stretched seed, dictates the radiation properties. Here, we
use the group delay dispersion (GDD) as a measure for the
degree of chirp on the seed laser. The strong linear
frequency chirp, characterized by a GDD of 7390 fs2,
was achieved by putting a 20 mm thick plate of fused silica
into the seed laser (frequency up-converted pulses from an
optical parametric amplifier) path, inducing a positive chirp
rate of 5.9 × 10−5 rad=fs2 and stretching the seed pulse
duration to 250 fs (FWHM), at the operating wavelength of
258 nm. The situation corresponds to the one in the top part
of Fig. 2(c). The FEL spectrum develops intensity mod-
ulations with increasing B, which directly correspond to the
intensity modulations in the temporal domain. Excellent
agreement [29] between experiment and theory (inset) [30]
demonstrates that, despite amplification in the radiator, the
FEL pulse envelope is preserved, justifying the use of
Eqs. (1) and (2) to describe the spectrotemporal content of
FEL light.
The next experiment, Fig. 3(b), was performed with a

moderate positive chirp (GDD ¼ 4520 fs2) on the seed
laser. For this purpose the direct output of the optical
parametric amplifier at 255 nm, with a pulse duration of
160 fs and a chirp rate of 6.7 × 10−5 rad=fs2, was used to
seed the FEL. Because the total FEL chirp is not high
enough to satisfy the condition for the spectrotemporal

equivalence [27], the central part of the spectral map is
significantly modified. Again, a remarkably good corre-
spondence is obtained between experiment and theory
(inset), demonstrating the predictive power of Eqs. (1)
and (2).
Based on the two spectral signatures in Figs. 3(a) and

3(b), the next set of experiments was carried out by putting
a negative chirp rate on the seed (third harmonic of a Ti:
sapphire laser, operating at 261.6 nm); in this case the GDD
was −1100 fs2. A fine control of the negative chirp rate was
possible using an optical compressor based on a pair of
gratings. The data in Fig. 3(c) correspond to a chirp rate of
−2.0 × 10−5 rad=fs2, compressing the seed pulse down to
120 fs. A strong modification of the spectral content versus
B with respect to the previous two cases is seen in Fig. 3(c),
confirming the extremely high sensitivity of the spectral
maps to the FEL phase. Experimental data once again fit
well with calculations (inset). Remarkably, the spectral
signature corresponds to that of a Fourier limited pulse with
a flat temporal phase [cf. Fig. 2(c), bottom]. The negative
chirp rate on the seed compensates the positive chirp due to
the quadratic curvature (≃12 MeV=ps2, measured at the
end of the linac using a radio-frequency deflecting cavity in
combination with an energy spectrometer [34]) on the
e-beam time-dependent energy profile and the chirp devel-
oped during the amplification stage [30]. More precisely,
because the phase contribution from the e beam ϕeðtÞ is
a function of B, the FEL chirp rate varies linearly from

FIG. 2 (color online). FEL pulse shaping through manipulations of the electron bunching envelope and FEL phase. (a) Theoretical
bunching envelope [square modulus of bnðtÞ, Eq. (1)], corresponding to the temporal FEL pulse shape, as a function of the
dimensionless dispersive strength (B). Just before the bifurcation B is optimized for maximum bunching, resulting in a single peak.
Increasing B leads to peak splitting due to electron overbunching in the central part. The envelope develops a multipeak structure as a
result of electron rebunching when B is increased even further. (c) The spectral map (FEL spectrum as a function of B) strongly depends
on the FEL phase (b). For a significantly chirped FEL pulse there is a direct correspondence between the temporal and spectral domains
(top). On the other hand, the spectral map of a Fourier limited pulse (with a flat phase) develops distinctive features with increasing B
due to interference between the individual peaks in the multipeak bunching structure (bottom). For the sake of visualization, the
bunching and spectral maps are normalized in amplitude for each value of B.
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about −1 to 9 × 10−5 rad=fs2 in the range of dispersive
strengths used in Fig. 3(c), going through zero at B≃ 0.14,
where full chirp compensation is achieved.
Several important conclusions can be drawn from the

above results. The experimental spectral maps in Fig. 3
and their excellent agreement with theory based on
Eqs. (1) and (2) imply that the FEL output can be fully
manipulated by controlling the seed laser envelope and
phase, where the dispersive strength can act as an additional
tuning knob (e.g., a FEL pulse train with a fixed phase
relationship between individual pulses is obtained simply
by increasing the strength of the dispersive section). Our
results demonstrate, to the best of our knowledge, the first
compelling evidence that the radiation produced by a
seeded FEL is temporally fully coherent and, that by
adjusting the seed laser phase, a controllable amount of
linear frequency chirp can be transferred to the FEL pulse.
Moreover, a careful tuning allows generation of Fourier
limited pulses with a flat temporal phase. Such pulses are
typically used as references in the field of coherent
quantum control. Our results therefore open the door to
full spectrotemporal shaping of intense ultrashort pulses in
the XUV to soft-x-ray region using methods similar to the
ones developed in the visible spectral region [35]. In
combination with the possibility of engineering the FEL
transverse radiation profile using HGHG [36], this sets the
stage for entirely new experiments with pulsed light at short
wavelengths.
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