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Single ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses is shown
to produce photoelectron momentum distributions in the polarization plane having helical vortex structures
sensitive to the time delay between the pulses, their relative phase, and their handedness. Results are
obtained by both ab initio numerical solution of the two-electron time-dependent Schrödinger equation and
by a lowest-order perturbation theory analysis. The energy, bandwidth, and temporal duration of attosecond
pulses are ideal for observing these vortex patterns.

DOI: 10.1103/PhysRevLett.115.113004 PACS numbers: 32.80.Fb, 02.70.Dh, 02.70.Hm, 03.75.-b

Ramsey interference [1] of laser-produced electron wave
packets has been investigated in both Rydberg states [2,3]
and in the continuum [4] for the case of linearly polarized
lasers. In this Letter we investigate an unusual kind of
Ramsey interference between photoelectron wave packets
produced in ionization of the helium atom by a pair of
time-delayed, oppositely circularly polarized, attosecond
laser pulses. In the polarization plane, the photoelectron
momentum distributions exhibit helical vortex patterns,
corresponding to Fermat spirals, whose handedness depends
on whether the pair of attosecond pulses are right-left or left-
right circularly polarized. Observation of the vortex patterns
requires the large bandwidth of few-cycle attosecond pulses.
Moreover, the vortex patterns in the photoelectron momen-
tum distributions that we predict have a counterpart in optics
[5], in which similar vortex patterns have been produced by
interference of particular kinds of laser beams. Our predicted
photoelectron momentum distributions thus provide an
example of wave-particle duality, and our predicted angular
distributions demonstrate an unusual kind of control over
photoelectrons on an attosecond time scale.
Consider the interaction of the helium atom in its 1Se

ground state with the electric field FðtÞ of a pair of
attosecond pulses having the same carrier frequency ω
and smooth pulse envelope F0ðtÞ, but differing in their
polarizations e1;2 and carrier envelope phases (CEPs) ϕ1;2,
with the second pulse delayed in time by τ, i.e.,

FðtÞ ¼ F1ðtÞ þ F2ðt − τÞ≡ F0ðtÞRe½e1e−iðωtþϕ1Þ�
þ F0ðt − τÞRe½e2e−iðωðt−τÞþϕ2Þ�: ð1Þ

For the jth pulse (j ¼ 1; 2), the polarization vector is

ej ≡ ðϵ̂þ iηjζ̂Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ η2j

q

, where ηj is the ellipticity

(−1 ≤ ηj ≤ þ1), ϵ̂ and ζ̂ ≡ k̂ × ϵ̂ are the major and minor

axes of the polarization ellipse, and k̂∥ẑ is the pulse

propagation direction. The degrees of linear and circular
polarization of the jth pulse are, respectively, lj ≡ ðej ·
ejÞ ¼ ð1 − η2jÞ=ð1þ η2jÞ and ξj ≡ Im½e�j × ej�z ¼ 2ηj=
ð1þ η2jÞ, where l2

j þ ξ2j ¼ 1. We solve the two-electron
time-dependent Schrödinger equation (TDSE) for an
electric field FðtÞ of intensity 1014 W=cm2 and carrier
frequency ω ¼ 1.323 a:u:, which is greater than the He
binding energy, Eb ¼ 0.9037 a:u: Each pulse has a
temporal envelope F0ðtÞ ¼ F0cos2ðπt=TÞ with
−T=2 ≤ t ≤ T=2, where T ≡ npð2π=ωÞ ¼ 344 as is the
total pulse duration for np ¼ 3 optical cycles. This corre-
sponds to a spectral width [6] Δω≃ 1.44ω=np ≈ 17 eV,
and a FWHM in the intensity of 0.36T, or 1.1 cycles. Such
single-cycle attosecond pulses (having linear polarization)
have been achieved experimentally [7–9], albeit with much
lower intensity. However, the vortices we predict involve
single-photon ionization processes; thus, the vortex pat-
terns will occur for lower intensity pulses, although the
photoelectron count rate will scale linearly with intensity.
We obtain the wave packet ΨðtÞ by solving the

six-dimensional two-electron TDSE for the He atom
interacting with two circularly polarized attosecond pulses
using methods developed previously [6] for a single
arbitrarily polarized attosecond pulse. Our method uses
the finite-element discrete-variable representation com-
bined with the real-space-product algorithm [10] as well
as Wigner rotation transformations at each time step from
the laboratory frame to the frame of the instantaneous
electric field [11,12]. We extract the triply differential
probability (TDP) [13] for single ionization of He to
Heþð1sÞ from the wave packet ΨðT þ τÞ (i.e., after the
end of the two pulses) by projecting ΨðT þ τÞ onto
correlated field-free Jacobi matrix wave functions [14].
The TDP, d3W=d3p≡Wξ1

ξ2
ðpÞ, for single electron ioniza-

tion to the continuum with momentum p≡ ðp; θ;φÞ is
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d3W
d3p

≡ jhΘð−Þ
1s ðr1; r2;pÞjΨðr1; r2; eϕ1

; eϕ2
; T þ τÞij2; ð2Þ

where eϕj
≡ eje−iϕj , with j ¼ 1; 2. We include four total

angular momenta (L ¼ 0 − 3), their azimuthal quantum
numbers jMj ≤ L, and all combinations of individual
electron orbital angular momenta l1; l2 ¼ 0–5. Regardless
of time delay τ, our numerical results show that only M ¼
þL (respectively, M ¼ −L) states are populated for two
identical pulses with ξ1 ¼ ξ2 ¼ þ1 (respectively, ξ1 ¼
ξ2 ¼ −1). For two oppositely circularly polarized pulses
(with ξ1 ¼ −ξ2 ¼ �1) only M ¼ �L states are populated.
In all cases, 1Po states give the dominant contribution (by 2
orders of magnitude) thus indicating our results stem from
single photon ionization processes.
For our pulse parameters, first-order perturbation theory

(PT) applies. The PT analysis of the problem, given in the
Supplemental Material [15], is similar to that for ionization
by a single pulse [19]. Below we present results of our
PT analysis for two cases: (i) the two pulses have the same
polarization e1 ¼ e2; (ii) the pulses are circularly polarized
in opposite directions, e1 ¼ e�2.
For two identically polarized pulses, l1 ¼ l2 ¼ l and

ξ1 ¼ ξ2 ¼ ξ. The TDP d3W=d3p is thus (see Supplemental
Material [15])

Wξ
ξðp; θ;φÞ ¼

3Wp

2π
ð1þ l cos 2φÞsin2θcos2ðΦ=2Þ; ð3Þ

where the relative phase, Φ, is given by

Φ ¼ ðEþ EbÞτ þ ðϕ1 − ϕ2Þ≡ ðp2=2þ EbÞτ þ ϕ12: ð4Þ

The dynamical parameter Wp in Eq. (3) depends only on
the electron energy, E ¼ p2=2; it is independent of the
momentum direction, p̂, and the pulse parameters e1, e2, τ,
and ϕ12 ¼ ϕ1 − ϕ2. Consequently, the φ dependence of
the TDP Eq. (3) is determined by the degree of linear
polarization l. For circularly polarized pulses η ¼ �1,
ξ ¼ �1, and l ¼ 0. Hence the TDP Eq. (3) is independent
of φ and its polar angle plots in the polarization plane
(θ ¼ π=2) have circularly symmetric patterns, as shown in
Fig. 1 for two right-circularly polarized pulses with differ-
ent CEPs for two time delays: τ ¼ 0 and τ ¼ 500 as.
Owing to the dependence of the relative phase Φ on the
time delay τ [cf. Eq. (4)], for τ ¼ 0 there is no structure in
the momentum distribution. For τ ¼ 500 as, however, the
Ramsey interference of the two electronic wave packets
has a form similar to Newton’s rings, i.e., maxima and
minima along the radial direction in momentum space.
(The interference pattern in Fig. 1(b) is similar to that found
in interference of two identical optical beams [5].)
Although the two pulses have different CEPs, owing to
the circular symmetry, varying the relative CEP ϕ12 only
changes the magnitude of the differential probability

Wξ
ξðp; π=2;φÞ but has no effect on the pattern in the

polarization plane. Averaging Eq. (3) over p̂, we obtain the
single differential probability dW=dE¼pWp½2cosðΦ=2Þ�2.
Hence, the ionization probability for fixed ϕ12 can be
controlled by varying the time delay τ [cf. Eq. (4)].
For oppositely circularly polarized pulses, e�1 ¼ e2,

l1 ¼ l2 ¼ 0, and ξ1 ¼ −ξ2 ¼ �1. The TDP d3W=d3p
takes the form (see Supplemental Material [15]):

Wξ1
ξ2
ðp; θ;φÞ ¼ 3Wp

2π
sin2θcos2ðΦ=2 − ξ1φÞ; ð5Þ

where ξ1 ¼ −ξ2 ¼ �1 corresponds to a right-left (þ) or a
left-right (−) pair of oppositely circularly polarized pulses.
In contrast to the case of identical pulses, the angle-
averaged probability, dW=dE ¼ 2pWp, depends neither
on the time delay, τ, nor the relative CEP, ϕ12. The
photoelectron angular distribution, Eq. (5), in the polari-
zation plane (θ ¼ 90°) has the form of a two-start or two-
arm spiral structure, as may be seen from the following
considerations. From Eq. (5), the TDP Wξ1

ξ2
is maximal for

Φ=2 − ξ1φ ¼ Φ=2þ ξ2φ ¼ πn and is zero for Φ=2−
ξ1φ¼Φ=2þξ2φ¼ð2nþ1Þπ=2, where n¼ 0;�1;�2;…,
and 0 ≤ φ ≤ 2π. Using Eq. (4), the p dependence of the
polar angles φ at these maximum and zero values of
Wξ1

ξ2
ðp; θ;φÞ is

φmax
n ðpÞ ¼ ξ2½πn − ðτEb þ ϕ12Þ=2 − τp2=4�;

φzero
n ðpÞ ¼ ξ2½π=2þ πn − ðτEb þ ϕ12Þ=2 − τp2=4�: ð6Þ

Equations (6) define Fermat (or Archimedean) spirals (or
helixes) in the ðp;φÞ plane. As φmax

n ðpÞ and φzero
n ðpÞ,

shifted by the angle π=2 with respect to each other, vary
with energy p2=2 (through possibly many 2π cycles,
depending upon τ), they trace out the maxima and the
zeros of the TDP. Since jξ2j ¼ 1, the pattern is a two-arm
helical spiral, corresponding to n ¼ 0; 1, as other values of
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FIG. 1 (color online). Triply differential probability (TDP)
d3W=d3p [see Eqs. (2), (3), and (4)] in the polarization plane
for ionization of He by two right-circularly polarized pulses
delayed in time by (a) τ ¼ 0; and (b) τ ¼ 500 as. Each pulse has
carrier frequency ω ¼ 36 eV, np ¼ 3 cycles with total duration
T ¼ 344 as, intensity I ¼ 1014 W=cm2, and CEPs of ϕ1 ¼ 0 and
ϕ2 ¼ π=2. The magnitudes in a.u. of the TDPs are indicated by
the color scales in each panel.
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n replicate the same lines. Pulses with ξ1 ¼ −ξ2 ¼ �1
correspond to right- (þ) or left- (−) handed spirals. The
Fermat spirals become wound more densely as τ increases.
Our numerical results for these PT predictions for two

oppositely circularly polarized few-cycle attosecond pulses
are shown in Figs. 2 and 3, where we plot the photoelectron
momentum distributions in the polarization plane for
various CEPs and time delays. Figures 2(a) and 2(b) are
for zero time delay between the pulses and two relative
CEPs ϕ12. For τ ¼ 0, superposing two oppositely circularly
polarized pulses gives a linearly polarized pulse and we
observe in Fig. 2(a) the expected symmetric dipole pattern
[∝ cos2ðξ1φÞ] of the ionized electron momenta along the
linear polarization axis, which for ϕ12 ¼ 0 is the px axis
(φ ¼ 0; π). A similar result is shown in Fig. 2(b) except that
here ϕ12 ¼ −π=2 so that the linear polarization axis is
rotated clockwise by φ ¼ π=4, giving an angular distribu-
tion ∝ cos2ðϕ12=2 − ξ1φÞ. For ϕ12 ≠ 0, a change in sign of
ξ1 will change the angular distribution, unlike when
ϕ12 ¼ 0. This sensitivity to the helicity of ξ1 is essential
for producing vortices when the time delay is nonzero.
For a time delay of τ ¼ 500 as and ϕ12 ¼ −π=2, we

obtain the vortices shown in Figs. 2(c) and 2(d) for right-
left and left-right circularly polarized pulses, respectively.
As discussed above, these are two-start Fermat spiral
patterns with opposite handedness, i.e., counterclockwise
in Fig. 2(c) and clockwise in Fig. 2(d). (For a 3D plot of the
vortex pattern in Fig. 2(c), see Fig. 1 of the Supplemental
Material [15].) As predicted by PT Eq. (6), the number and

locations of the maxima and minima of the differential
probabilityWξ1

ξ2
ðp; π=2;φÞ in the polarization plane depend

on the time delay τ, as shown in Fig. 3 for four additional
values of τ. The results in Fig. 3 show that time delays of
several hundred attoseconds are necessary to observe well-
defined vortex patterns. As shown in the Supplemental
Material [15], the broad bandwidth of attosecond pulses
is necessary to observe the spiral patterns clearly.
Vortices in the probability distribution for a physical

process are quite general phenomena [20,21]. The con-
nection between a zero of the probability distribution and a
zero of the system wave function is given by the so-called
“imaging theorem” [21]. Velocity field vortices have been
intensively studied for collision processes involving ion-
ization of atoms and molecules by electron impact [21–23],
proton impact [24], positron impact [25], ion impact [26],
and both antiproton and photon impact [27]. Also, vortices
associated with population transfers to excited and con-
tinuum states have been studied in the electron probability
density of an atom subject to short linearly-polarized electric
fields [27,28]. However, as noted by I. Bialynicki-Birula
et al. [20], “We have to admit that vortex lines associated
with wave functions are rather elusive objects.” In particular,
vortex lines in impact ionization amplitudes are not explicitly
seen as vortices in the angular distributions. In contrast,
for ionization by two oppositely circularly polarized pulses,
the TDP vanishes along the two Fermat spiral arms in the
ðpx; pyÞ plane [cf. Eq. (6) for φzero

n ðpÞ for n ¼ 0; 1]. These
curves are thus a pair of vortex lines in the velocity field
of the photoelectron wave function [21].
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FIG. 2 (color online). Triply differential probability (TDP)
d3W=d3p [see Eqs. (2), (4), and (5)] in the polarization plane
for He ionization by (a),(b),(c) right-left and (d) left-right
circularly polarized attosecond pulses. Top row results: time
delay τ ¼ 0; bottom row results: τ ¼ 500 as. In (a), ϕ1 ¼ ϕ2 ¼ 0;
in (b), (c), (d), ϕ1 ¼ 0, ϕ2 ¼ π=2. In all panels ω ¼ 36 eV,
np ¼ 3 cycles, I ¼ 1014 W=cm2, and the magnitudes in a.u. of
the TDPs are indicated by the color scales.
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FIG. 3 (color online). Photoelectron momentum distributions
d3W=d3p [see Eqs. (2), (4), and (5)] in the polarization plane for
ionization of He by right-left circularly polarized attosecond
pulses delayed in time by (a) τ ¼ 50 as; (b) τ ¼ 150 as;
(c) τ ¼ 373 as; and (d) τ ¼ 976 as. Pulse parameters are the
same as in Figs. 2(b) and 2(c). The magnitudes in a.u. of the TDPs
are indicated by the color scales.
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The photoelectron vortex patterns in our TDPs in Figs. 2
and 3 are similar to the interference fringes of optical beams
carrying orbital angular momentum of unity [5]. In both
cases the interference patterns are two-start Fermat spirals
whose orientation is determined by a relative phase differ-
ence. In our case, this phase difference Φ is determined by
the energy ðp2=2þ EbÞ, time delay τ, and ϕ12, while in the
optical case the relative phase is determined by the wave
front curvature difference [5] (see Supplemental Material
[15]). In neither case is the appearance of helical fringes
caused by the polarization of either the optical or electronic
waves. Indeed, in the optical case both light beams were
linearly polarized [5], and in our electronic case, the
electron states with Lz ¼ �1 are essentially equally popu-
lated upon ionization by the pair of oppositely circularly
polarized attosecond pulses.
Figure 4 shows the time-delay periodicity of the photo-

electron angular distributions in the polarization plane.
Results of our numerical solutions of the TDSE in
Fig. 4(a) are compared with the PT results in Fig. 4(b) for
a fixed electron kinetic energy, E1 ¼ ω − Eb. For a fixed
relative CEP ϕ12 between the two pulses, the angular
distribution is unchanged for time delays of τn ¼ nπ=ðEþ
EbÞ with n an even integer, as expected from the PT Eqs. (4)
and (5). Figure 4(b) shows this PT result to be valid: the
angular distributions for τ0 and τ10 are identical. Our
numerical results in Fig. 4(a) for these two time delays
are nearly the same. This indicates the PTassumption that the
second pulse sees the same initial state as the first pulse (i.e.,
the He ground state), instead of the state resulting from
interaction of the He ground state with the first attosecond
pulse, is valid to a very good approximation (especially given
the greater sensitivity of differential probability results to
theoretical approximations as compared to results for total

probabilities). For time delays τn with odd integer n, the PT
Eqs. (5) and (4) predict the angular distributions to be shifted
by π=2 with respect to those for even integers n, as shown in
Figs. 4(a) and 4(b). This sensitivity of the angular distribu-
tions to the time delay implies the ability to control the
direction of ionization of electrons by adjusting the time
delay between the two attosecond pulses.
Experimental observation of these vortex patterns in the

photoelectron momentum distributions requires a pair of
oppositely circularly polarized attosecond pulses with even
low intensity but with control of the relative CEP and the
time delay between the two pulses. The spectral widthΔω of
each pulse should span the energies of several spiral fringes,
i.e., 2π=τ < Δω [see Eqs. (4), (5), and (6)]. Generation of
circularly polarized harmonics in the extreme ultraviolet
energy regime has recently been achieved [29]. Velocity map
imaging or reaction microscope techniques can be used
to measure the photoelectron momentum distribution. The
sensitivity of these vortex patterns to the parameters of the
pair of attosecond pulses makes them an ideal means of
characterizing these pulses and of timing ultrafast processes.
Finally, the He atom and other light atoms such as H, Li, and
Be are ideal targets owing to the fact that they have only
occupied subshells of l ¼ 0 electrons, thus obviating (in the
case of heavier atoms) effects of ionization of two or
more subshells having different angular momenta by broad
bandwidth attosecond pulses.
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