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Low-energy spectra of 4n nuclei are described with high accuracy in terms of four-body correlated
structures (“quartets”). The states of all N ≥ Z nuclei belonging to the A ¼ 24 isobaric chain are
represented as a superposition of two-quartet states, with quartets being characterized by isospin T and
angular momentum J. These quartets are assumed to be those describing the lowest states in 20Ne (Tz ¼ 0),
20F (Tz ¼ 1), and 20O (Tz ¼ 2). We find that the spectrum of the self-conjugate nucleus 24Mg can be well
reproduced in terms of T ¼ 0 quartets only and that, among these, the J ¼ 0 quartet plays by far the leading
role in the structure of the ground state. The same conclusion is drawn in the case of the three-quartet
N ¼ Z nucleus 28Si. As an application of the quartet formalism to nuclei not confined to the sd shell, we
provide a description of the low-lying spectrum of the proton-rich 92Pd. The results achieved indicate that,
in 4n nuclei, four-body degrees of freedom are more important and more general than usually expected.
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In nuclear physics, four-body correlated structures are
usually associated with α clustering. A common theoretical
approach to α clustering is represented by the α-cluster
model [1]. According to this model, the nucleus consists of
an N ¼ Z core to which some α clusters are appended.
These clusters are tightly bound and spatially localized
structures of two neutrons and two protons. The α-cluster
model exhibits a striking contrast with the standard shell
model picture in which protons and neutrons are described
instead as weakly interacting quasiparticles in a mean field.
However, these two pictures are expected to coexist at low
excitation energies where, due to the Pauli blocking, which
acts more strongly than in the states close to the α emission
threshold (e.g., see the case of the Hoyle state [2]), the α
clustering is expected to manifest itself mainly as four-body
correlations in the configuration space. It is thus commonly
supposed that correlated four-body structures (“quartets”)
play a major role in the ground and excited sates of N ¼ Z
nuclei. However, to our knowledge, this supposition has
never been supported by compelling calculations. In this
Letter, by using a simple microscopic quartet model, we
will show how the low-energy spectra of 4n nuclei can be
indeed described in terms of quartets with an accuracy
comparable with state-of-the-art shell model calculations.
We shall prove that this is the case not only for self-
conjugate nuclei but also for 4n nuclei with N ≠ Z. For the
latter nuclei the low-lying states will be expressed in terms
of quartets built not only by two protons and two neutrons
but also by one proton and three neutrons as well as by four
neutrons. This fact indicates that the four-body degrees of
freedom are important also for configurations that are
different from the α-like ones.
Microscopic quartet models have a long history in

nuclear structure. They have been employed to treat the

proton-neutron interaction, in particular the proton-neutron
pairing, and to investigate the quartet condensation inN ¼ Z
nuclei [3–9]. However, their complexity has always repre-
sented a hindrance to their development. Recently, a simple
approach has been proposed that is able to describe accu-
rately theground state of the isovector pairingHamiltonian as
a condensate of quartets built by two neutrons and two
protons coupled to total isospin T ¼ 0 and, for spherically
symmetric mean fields, to total angular momentum J ¼ 0
[10]. This quartet model conserves exactly the particle
number, the isospin, and the Pauli principle and can be
applied for any number of quartets. Later on, a more general
description of the ground state of N ¼ Z nuclei as a product
of distinct quartets was proposed and applied to a description
of both isovector (T ¼ 1, J ¼ 0) and isoscalar (T ¼ 0,
J ¼ 1) pairing correlations [11,12].
Of course, pairing is only a part (although a crucial one)

of the nuclear interaction. It is reasonable to expect that a
realistic description of self-conjugate nuclei should involve
not only T ¼ 0, J ¼ 0 quartets. In the following we will
show how the approach of Refs. [11,12] has been extended
to include quartets with arbitrary values of isospin and
angular momentum and to treat realistic interactions of
the shell model type. In the extended approach we shall
identify the quartets that contribute most to the structure of
the low-lying states in even-even N ¼ Z nuclei and, in
particular, we shall investigate the role played by T ¼ 0,
J ¼ 0 quartets in the ground state of these nuclei. Our
analysis will be mainly confined to sd-shell nuclei.
We start by briefly illustrating our approach. We work in

a spherically symmetric mean field and label the single-
particle states by i≡ fni; li; jig, where the standard nota-
tion for the orbital quantum numbers is used. The quartet
creation operator is defined as
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Qþ
α;JM;TTz

¼
X

i1j1J1T1

X

i2j2J2T2

CðαÞ
i1j1J1T1;i2j2J2T2

× ½½aþi1aþj1 �J1T1 ½aþi2aþj2 �J2T2 �JTMTz
;

where aþi creates a fermion in the single particle state i and
JðTÞ and MðTzÞ denote, respectively, the total angular
momentum (isospin) and the relative projections. No
restrictions on the intermediate couplings J1T1 and J2T2

are introduced in the calculations. In order to generate the
spectra of 4n nuclei we perform configuration interaction
calculations in spaces built in terms of selected sets of the
above quartets. After being constructed, these are kept
unchanged in all calculations.
The criterion adopted for the selection of the quartets has

been that of choosing, as representative of the quartets with
a given isospin T, those describing the lowest levels with
that isospin in nuclei with four active particles outside the
inert core of reference. For applications within the sd shell,
the inert core is represented by 16O and the nuclei that have
therefore been considered for the definition of the quartets
are 20

10Ne10,
20
9 F11, and 20

8 O12. The lowest states of these
nuclei are characterized by T ¼ 0, 1, and 2, respectively.
Each of these states therefore identifies a quartet with given
T, J [and a projection Tz ¼ ðN − ZÞ=2]. We have carried
out shell model (SM) calculations for these three nuclei
and, as initial sets of quartets, we have selected those
formed by the lowest six states in 20Ne (0 ≤ J ≤ 6), the
lowest five states in 20F (1 ≤ J ≤ 5), and the lowest nine
states in 20O (0 ≤ J ≤ 4). The mixing amplitudes defining
each collective quartet have resulted from these SM
calculations. As will be seen below, we have also explored
reductions of these sets to identify the most relevant
quartets in the structure of the nuclei under investigation.
For sd-shell nuclei we have employed the USDB inter-
action [13] and the SM results have been extracted
from Ref. [14].
We start our analysis by examining the self-conjugate

nucleus 24Mg. In Fig. 1, we compare the experimental
spectrum of this nucleus to that resulting from a SM
calculation and to the spectrum obtained in the quartet
model (QM) when all the selected T ¼ 0, 1, 2 quartets
are taken into account. The quartet approach is seen to
reproduce well both the SM ground state correlation energy
and the SM excited states up to an energy of about 9 MeV.
The SM is in turn able to fit well the experimental levels.
Having verified that the selected sets of T ¼ 0, 1, 2

quartets are sufficient to describe the low-energy spectrum
of 24Mg, it becomes of interest to investigate the role of the
different quartets. We begin by focusing on isospin. In
Fig. 1, on the right-hand side, we show the theoretical
spectrum obtained in the quartet formalism when only
T ¼ 0 quartets are retained. On top of the lowest levels we
also show the overlaps with the corresponding SM eigen-
states. One can see that this spectrum does not exhibit

relevant differences with respect to the full QM calculation
and that the above overlaps are pretty large, which confirms
the good quality of the QM(T ¼ 0) wave functions. This
result provides clear evidence of the marginal role played
by the T ¼ 1 and T ¼ 2 quartets in the structure of these
states.
As a next step, we concentrate on the ground state by

employing only T ¼ 0 quartets. In Fig. 2, we show how
the error in the correlation energy of this state, relative to
the SM result, varies by reducing, one quartet at a time
and starting from the highest one in energy, the set of
T ¼ 0 quartets. The correlation energy remains basically
unchanged up to the point where only the lowest J ¼ 0, 2, 4
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FIG. 1. Spectrum of 24Mg obtained in the quartet model (QM)
compared to experimental data (EXP) and shell model (SM)
results [14]. QMðT ¼ 0Þ denotes the results obtained only with
T ¼ 0 quartets; the numbers on top of these levels are the
overlaps between the QM and SM eigenfunctions. The number
below each spectrum gives the ground state correlation energy,
namely, the difference between the total ground state energy and
the energy in the absence of interaction.
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value) in the ground state correlation energy of 24Mg obtained
within the QMwith the sets of quartets indicated in the figure. For
each set we also show the overlaps between SM and QM wave
functions.
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quartets are left. From this point on further reductions in the
set of quartets lead to significant variations in the energy.
The overlaps between the SM and QM ground states, which
are shown in the same figure, exhibit a behavior that is
consistent with that of the energies. Thus, these calculations
indicate that the T ¼ 0 quartets with J ¼ 0, 2, 4 play a
major role in the ground state of 24Mg. Among these
quartets, the T ¼ 0, J ¼ 0 quartet is by far the one that
contributes most to the correlation energy since, as can be
seen in Fig. 2, an approximation in terms of only this
quartet accounts for about 94% of the total energy.
We have searched for a confirmation of the results just

discussed by examining another self-conjugate nucleus in
the sd shell: 28Si. We find that for this isotope the set of
T ¼ 0, J ¼ 0, 2, 4 quartets already exhausts almost 99% of
the correlation energy. Also in this case, the T ¼ 0, J ¼ 0
quartet is found to play a leading role, being able to account
by itself for 93.4% of the total energy.
So far we have examined only self-conjugate nuclei. The

range of nuclei that is accessible in terms of the set of
T ¼ 0, 1, 2 quartets employed for 24Mg is, however, much
broader. In Fig. 3, we extend the previous analysis to the
whole A ¼ 24 isobaric chain by comparing the low-energy
spectra of 24

11Na13,
24
10Ne14,

24
9 F15, and 24

8 O16 obtained in

the quartet model with the SM results and with the
experimental data. As one can see, for all these nuclei
the quartet formalism generates spectra that agree well with
the SM ones. It is worth stressing that for the nuclei shown
in Fig. 3 the quartets are built not only by two protons and
two neutrons, as in the case of N ¼ Z nuclei, but also by
one proton and three neutrons and by four neutrons. The
case of quartets built by four like particles had been already
discussed in Ref. [15] in relation with a treatment of the
pairing Hamiltonian.
Similarly to what is observed in the self-conjugate 24Mg

and 28Si, we have verified that a reasonable description of
the low-lying states in N > Z nuclei can still be achieved
by significantly reducing the number of quartets involved
in the QM calculations. By employing, for example, only
sets of T ¼ 0 and T ¼ 2 quartets limited to the lowest ones
with J ¼ 0, 2, 4, the QM predicts ground state energies of
24Ne and 24O that are within 3% of the SM value. The same
sets of quartets employed for 28Mg and 28Ne give rise to
QM ground state energies that are within 2% of the
SM value.
In order to verify that the results presented so far are not

specific to sd-shell nuclei, we have carried out a similar
analysis for the proton-rich nucleus 92

46Pd46. Calculations
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FIG. 3. The spectra of A ¼ 24 nuclei generated by the QM approach compared to the experimental data and the SM predictions. See
the caption of Fig. 1 for further details.
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have been done in a space spanned by the p1=2, g9=2 orbitals
using the F-FIT interaction of Johnstone and Skouras [16].
In Fig. 4, one sees the low-lying yrast spectrum that is
obtained in the QM approach by employing only T ¼ 0
quartets. These quartets are those associated with the lowest
levels of 96

48Cd48 (seven levels with 0 ≤ J ≤ 8) and include
also a negative parity level with J ¼ 5. The QM yrast
spectrum is seen to agree well with the experimental one
[17] as well as with the SM spectrum generated within the
same model space by Herndl and Brown [18]. As in the
cases of the sd-shell nuclei analyzed above, the T ¼ 0,
J ¼ 0 quartet is found to play a leading role in the ground
state, accounting for almost 99% of the correlation energy.
A detailed analysis of the structure of 92Pd is reported in a
separate study [19].
In summarizing, in this work we have presented an

analysis of 4n nuclei in a formalism of quartets, i.e., four-
body correlated structures characterized by total isospin T
and total angular momentum J. The analysis has been
carried out for the whole isobaric chain of A ¼ 24 nuclei,
ranging therefore from even-even to odd-odd nuclei as well
as from self-conjugate nuclei to nuclei with only neutrons
in the valence shell. For all these nuclei, as well as for the
proton-rich nucleus 92Pd, the quartet formalism has pro-
vided a description of the low-energy spectra comparable in
accuracy to that of shell model calculations. This fact
confirms the importance of quartet degrees of freedom in
any type of 4n nuclei and validates the present quartet
formalism as the appropriate tool for treating them. It is
worth noticing that the matrices to be diagonalized in a QM
calculation can be by orders of magnitude smaller than the
corresponding SM ones. As an example, the size of the
Hamiltonian matrix in the QMðT ¼ 0Þ calculation of Fig. 1
is 63 as compared to 28 503 in the SM case (both
calculations being done in the m scheme). Offering a
representation of the nuclear wave function in a compact
and physically transparent form does constitute a crucial
aspect of the QM.

As a concluding remark, we notice that the description of
4n self-conjugate nuclei in terms of T ¼ 0 quartets of low
angular momenta (J ¼ 0; 2; 4) that has emerged from the
present analysis exhibits a striking analogy to that of
nuclear collective spectra in a formalism of S (J ¼ 0), D
(J ¼ 2), and G (J ¼ 4) pairs (e.g., see Ref. [20]; for a more
general shell-model-like formalism based on collective
pairs see Ref. [21]). Such an analogy encourages the
extension to quartets of boson mapping techniques devel-
oped for a microscopic analysis of the interacting boson
model (IBM) [22]. Thus, if the s (J ¼ 0) and d (J ¼ 2)
IBM bosons are interpreted as the images of, respectively,
the T ¼ 0, J ¼ 0 and T ¼ 0, J ¼ 2 quartets, and to the
extent that the description of the fermionic Hamiltonian
in the space of these quartets can be transferred onto that of
a two-body Hermitian sd boson Hamiltonian, with its
parameters eventually absorbing the contribution of other
T ¼ 0 quartets (if any), then the use of IBM-type
Hamiltonians for the treatment of even-even self-conjugate
nuclei finds a microscopic justification in our analysis. To
our knowledge, in the literature there exists only one (old)
example of such a use, which was carried out, however, on
a purely phenomenological basis [23].
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