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We calculate the shear-viscosity-over-entropy-density ratio η=s in Yang-Mills theory from the Kubo
formula using an exact diagrammatic representation in terms of full propagators and vertices using gluon
spectral functions as external input. We provide an analytic fit formula for the temperature dependence of
η=s over the whole temperature range from a glueball resonance gas at low temperatures, to a high-
temperature regime consistent with perturbative results. Subsequently, we provide a first estimate for η=s
in QCD.
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Introduction.—The experimental heavy-ion programs at
the RHIC [1,2] and at the LHC [3] explore the physics of
the quark-gluon plasma (QGP). It turns out that the
dynamics of the hot plasma created in heavy-ion collisions
is well described by hydrodynamics. Therefore, the deter-
mination of transport coefficients in the QGP is of great
interest. One aspect is that the inference of the initial-state
physics requires a precise description of the hydrodynam-
ical evolution, which, in turn, depends on transport
coefficients as microscopic input [4]. In particular, the
viscosity-over-entropy ratio η=s governs the efficiency of
the conversion of the initial spatial anisotropy into a
momentum anisotropy of the final state.
For the determination of η=s and its temperature depend-

ence in the quark-gluon plasma, theoretical approaches
face several challenges. The temperature regimes below
and above the critical temperature Tc are characterized by
different degrees of freedom, and for temperatures T ≲ 2Tc,
nonperturbative effects become important. Of particular
interest is the vicinity of Tc, where the minimum for η=s
is expected [5,6]. A universal lower bound for η=s of 1=4π
was conjectured in Ref. [7] using the AdS=CFT correspon-
dence. Indeed, measurements of the elliptic flow v2 indicate
a value for η=s which is of the order of this lower bound [8].
The bound has been tested theoretically with several
methods for the QGP [9–15] but also for other potentially
perfect liquids, such as ultracold atoms [16–18].
The Kubo formulas relate η to the energy-momentum

tensor (EMT). Spectral functions are real-time quantities
and cannot be obtained directly from Euclidean correlation
functions. However, the direct calculation of real-time
correlation functions represents a notoriously difficult
problem in nonperturbative approaches to quantum field
theory. Even though first computations in this direction
have been performed, e.g., in Refs. [19,20], we shall utilize
Euclidean correlation functions within a numerical analytic
continuation.

In this Letter, we study the shear-viscosity-over-entropy
ratio η=s in pure SUð3Þ Landau gauge Yang-Mills (YM)
theory within the approach setup in Ref. [9]. In the present
work, we considerably generalize the approach, also
aiming at quantitative precision. We apply an exact func-
tional relation that allows a representation of the EMT
correlation function in terms of full propagators and
vertices of the gluon field. The analysis covers the entire
temperature range from the glueball regime below the
critical temperature Tc, up to the ultraviolet where pertur-
bation theory is applicable. In particular, this resolves the
nonperturbative domain at temperatures T ≲ 2Tc. We
provide a global, analytic fit formula for η=s which extends
the well-known perturbative high-temperature behavior to
the nonperturbative temperature regime. Based on this
description for pure gauge theory, a first estimate for η=s
in full QCD is derived.
YM shear viscosity from gluon spectral functions.—The

shear viscosity is related to the spectral function ρππ of the
spatial traceless part πij of the energy-momentum tensor
via the Kubo relation

η ¼ lim
ω→0

1

20

ρππðω; ~0Þ
ω

; ð1Þ

where

ρππðω; ~pÞ ¼
Z

d4x
ð2πÞ4 e

−iωx0þi~p ~xh½πijðxÞ; πijð0Þ�i: ð2Þ

For the computation of Eq. (2), we use the fact that a
general correlation function of composite operators can be
expanded in terms of full propagators and full vertices of
the elementary fields [9,21],

hπij½Â�πij½Â�i ¼ πij

�
GAϕk

δ

δϕk
þ A

�
πij

�
GAϕk

δ

δϕk
þ A

�
;

ð3Þ
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where ϕ ¼ ðA; c; c̄Þ denotes the expectation value of the
fluctuation (super)field ϕ̂, e.g., A ¼ hÂi, and Gϕiϕj

¼
hϕ̂iϕ̂ji − hϕ̂iihϕ̂ji denotes the propagator of the respective
fields. This yields a diagrammatic representation in terms
of a finite number of diagrams involving full propagators
and vertices; see Fig. 1 for the types of diagrams appearing
in the full expansion up to two-loop order. We emphasize
that Eq. (3) is an exact relation whose finite diagrammatics
should not be confused with a perturbative expansion in an
infinite series of Feynman diagrams. The internal vertices
arise from functional derivatives of the full propagator in
Eq. (3) and are, therefore, automatically fully dressed.
However, the RG invariance of the left-hand side of Eq. (3)
only carries over to the right-hand side if also the external
vertices derived from the EMTare dressed with appropriate
wave-function renormalization factors and running cou-
plings. This argument is supported by the flow equation for
the EMT itself, which can be derived from the flow
equation for composite operators [21], where full vertices
are generated during the flow. More heuristically, this can
also be seen in a skeleton expansion. Therefore, Eq. (2)
generates diagrams up to loop order six, but these can be
recast as diagrams of maximal order three with dressed
external vertices.
The natural framework for such a calculation is the real-

time formalism based on the Schwinger-Keldysh closed
time path. Within such a setup, one never has to resort
to Euclidean field theory. Here one distinguishes two
branches of the time contour, conventionally denoted by
þ=− along with separate fields and sources. Correlation
functions, thus, become matrix valued. In thermal equilib-
rium, the propagator iG can be parametrized solely in terms
of the spectral function ρðω; ~pÞ according to (cf. Ref. [22]
for the free case)

G��ðω; ~pÞ ¼�PV
Z

∞

−∞
dω̄

ρðω̄; ~pÞ
ω− ω̄

− i

�
nðωÞþ 1

2

�
ρðω; ~pÞ;

Gþ−ðω; ~pÞ ¼−inðωÞρðω; ~pÞ;
G−þðω; ~pÞ ¼−i(nðωÞþ 1)ρðω; ~pÞ; ð4Þ

where nðωÞ ¼ 1=½expðω=TÞ þ 1� denotes the Bose distri-
bution function. The spectral function is defined as

ρðω; ~pÞ ¼ i(G−þðω; ~pÞ −Gþ−ðω; ~pÞ): ð5Þ
Using the Kubo-Martin-Schwinger (KMS) condition for
the propagators, we find for the spectral function of the
energy-momentum tensor

ρππðω; ~pÞ ¼ ið1 − e−βωÞG−þ
ππ ðω; ~pÞ: ð6Þ

Inserting Eq. (6) into Eq. (1) implies

η ¼ i
β

20
G−þ

ππ ð0; 0Þ: ð7Þ

In this Letter, we present the full two-loop diagram-
matics. There are five types of two-loop diagrams arising
from Eq. (3); see Fig. 1. The branch indices of the external
vertices are fixed by Eq. (7) as −þ, whereas we sum over
internal branch indices. Thus, unlike in the one-loop case,
at two-loop level, the principal value parts of propagators
with equal branch indices can occur. However, at two-loop
level, possibly UV-divergent contributions cancel due to a
left-right symmetry after combining the appropriate dia-
grams. This is no longer true beyond two loop, where
diagrams with divergent subdiagrams arise.
The only nontrivial input in our calculation, apart from

the running coupling αs, is the gluon spectral function
obtained using the maximum entropy method (MEM) with
Euclidean functional renormalization group (FRG) data as
input. For details about MEM and gluon spectral functions,
we refer the reader to Ref. [9]. Using data from Ref. [23],
the running coupling αsðq; TÞ is calculated as

αsðq; TÞ ¼
z2c̄Acðq; TÞ

4πZTðq; TÞZcðq; TÞ2
; ð8Þ

with the dressing functions zc̄Ac; Zc; ZT of the ghost-gluon
vertex, the ghost propagator, and the transverse gluon
propagator. All couplings that appear in the vertices are
fully dressed running couplings. Here we use the ghost-
gluon coupling from above for all vertices consistent with
Slavnov-Taylor identities for p≳ 2 GeV [24]. We use
classical tensor structures for internal and external vertices.
Other tensor structures are negligible in this regime; see
Refs. [24,25]. For each two-loop diagram, we integrate out
one loop momentum. Considering the remaining loop
momentum, all integrands are peaked in the vicinity of

some value (q0;max; ~qmax). This leads to qmaxðTÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20;max þ ~q2max

q
≈ 7T where the running couplings

αsðq; TÞ are evaluated in order to minimize the impact
of the neglected momentum dependence of the vertices.
This defines a temperature-dependent vertex cou-
pling αs;vertðTÞ ¼ αsð7T; TÞ.

(c)(b)(a)

(e)(d) (f)

FIG. 1. Typesofdiagramscontributing to thecorrelationfunction
of the energy-momentum tensor up to two-looporder: one-loop (a),
sunset (b),Maki-Thompson (c), eight (d), squint (e), one-loopwith
vertex correction (f). Squares denote vertices derived from the
EMT; all propagators and vertices are fully dressed.
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Results.—Figure 2 shows the full two-loop result for η=s
employing the lattice entropy density from Ref. [26]
including all diagrams from Fig. 1. The data show, as
expected on general grounds, a clear minimum at
Tmin ≈ 1.26Tc. The minimal value η=sðTminÞ ¼ 0.14 is
well above the AdS=CFT bound, where the error bars
represent the combined systematic errors from MEM and
the FRG calculation. The lattice data [12,13] are in good
agreement with our results, supporting the reliability of
both methods. The inset in Fig. 3 shows the comparison to
the one-loop calculation [9], illustrating the very good
agreement around Tc. This confirms the argument con-
cerning the optimization of the RG scheme around Tc [9].
Only at larger temperatures, the data points of the one-loop
calculation lie outside the error bars of the full result. For
large temperatures, the dominant two-loop contributions
arise from the Maki-Thompson and the eight (see Fig. 3)

that resum classes of ladder diagrams. This is consistent
with the conventional picture in perturbative expansions
where ladder resummations are required to obtain the
correct result for the viscosity [27,28]. Note that diagrams
with overlapping loops are potentially suppressed as the
spectral functions are peaked in a narrow region in
momentum space. Because of the additional phase space
suppression, we expect that diagrams with more than two
loops are negligible. We have checked this suppression in a
first assessment of three-loop diagrams.
We provide a global fit function for η=sðTÞ, which

emphasizes the physical picture underlying the temperature
behavior and is well suited for phenomenological appli-
cations. This parametrization has to cover temperature
ranges corresponding to vastly different physical situations.
At large temperatures T ≫ Tc, the degrees of freedom are
gluons which can eventually be treated perturbatively.
By contrast, at small temperatures T ≲ Tc, YM theory
can effectively be described as a glueball resonance gas
(GRG). Finally, there is a transition region between these
two asymptotic regimes whose description requires non-
perturbative techniques.
In the high-temperature regime, perturbation theory is

applicable, and η=s is given as a function of the strong
coupling αs only. It turns out that the hard-thermal loop
(HTL) resummed data [29] are well described by the
functional form

η

s
ðαsÞ ¼

a
αγs

; ð9Þ

with a coefficient a and a scaling exponent γ ¼ 1.6ð1Þ. We
aim to extract a nonperturbative extension of the above
parametrization based on our data. In the region Tc − 3Tc,
strong correlations become important and perturbation
theory breaks down. This raises the question of a suitable
running coupling, as there is no unique definition of αs
beyond two loop. A quasiparticle picture suggests that an
appropriate choice of αs can be deduced from a heavy
quark potential [30,31].
An analytic expression for a coupling that generates a

linearly rising static quark potential at large distances is
given by [32–34]

αs;HQðzÞ ¼
1

β0

z2 − 1

z2 log z2
; ð10Þ

where z denotes a dimensionless momentum variable. At
large momenta, it approaches the one-loop running cou-
pling, where β0 ¼ 33=ð12πÞ denotes the coefficient in the
one-loop beta function of pure SUð3Þ Yang-Mills theory.
The scale identification is implemented by regarding αs;HQ
as a function of z ¼ cT=Tc with a scale identification factor
c. By construction, the divergence of Eq. (10) at zero
momentum leads to a vanishing contribution of Eq. (9) to
η=s at zero temperature. As an estimate for a lower bound
for a reasonable high-temperature fit, we consider the trace
anomaly as a hint from QCD thermodynamics, which starts

FIG. 2 (color online). Full Yang-Mills result (red) for η=s in
comparison to lattice results [12,13] (blue) and the AdS=CFT
bound of Kovtun, Son and Starinets (KSS) (orange). In addition,
the plot shows the analytic fit given in Eq. (11) and its two
components. The ratio η=s shows a minimum at Tmin ≈ 1.26Tc
with a value of 0.14.

FIG. 3 (color online). Relative contributions from different
diagram types to the two-loop viscosity as a function of temper-
ature. The squint contribution is orders of magnitude smaller and
not shown. The inset shows the comparison to the one-loop
result [9].
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to develop a T4 behavior for T ≳ 2Tc [35]. Using T > 3Tc
as a conservative estimate, our data are well described by
the scaling form (9) with the running coupling (10) and
parameters a ¼ 0.15 and c ¼ 0.66. One should note that
whereas the heavy quark potential coupling takes a rather
large value αs;HQðcT=TcÞjT¼Tc

≈ 1.77 at Tc, the vertex
coupling αs;vertðTcÞ ≈ 0.76 corresponding to a value of

αMS
s;vertðTcÞ ≈ 0.35 after conversion to the MS scheme [36] is

comparably small. This supports the validity of resumma-
tion arguments at moderately large temperatures but also
underlines the nonuniqueness of the definition of a running
coupling in the nonperturbative regime around Tc. The fit
(9) can be extended to even lower temperatures T ≳ 1.8Tc,
where it is still in very good agreement with our data; see
Fig. 2. These findings hint at the validity of a quasiparticle
picture even at considerably low temperatures.
Below Tc, the effective degrees of freedom change from

gluons to glueballs. The latter are automatically included
in the present setup [37]. For a gas of heavy particles
with m ≫ T, the viscosity-over-entropy ratio scales as
expðm=TÞ. Indeed, the low-temperature regime of our data
is well described by such an exponential. However, due to
the small number of data points and the comparably large
error bars below Tc, no precise statements about this regime
are possible. We aim to describe, in particular, the mid-
temperature regime by a simple global fit function. A power
law for small temperatures takes into account the dissoci-
ation of glueballs above Tc and is equally consistent with
our data for T⪅Tc. This is superposed with the high-
temperature asymptotics using an exponent γ ¼ 1.6 deter-
mined from Eq. (9). This leads to a global parametrization
of the form

η

s
ðTÞ ¼ a

αγs;HQðcT=TcÞ
þ b

�
T
Tc

�
−δ
: ð11Þ

With a ¼ 0.15ð2Þ, b ¼ 0.14ð1Þ, c ¼ 0.66ð6Þ, δ ¼ 5.1ð1Þ,
and γ ¼ 1.6ð1Þ as given above, this fit describes our data
very well; see Fig. 2.
The analytic fit function (11) for η=s in YM theory

enables us to provide a first estimate of η=s in full QCD,
again based on the idea of superposing a low- and high-
temperature behavior term. The procedure consists of
three separate steps. First, one has to take into account
the difference in scales and the running couplings in YM
and QCD. This involves replacing the coefficient β0 in
Eq. (10) by its QCD value, β0;QCD ¼ ð33 − 2NfÞ=ð12πÞ.
Additionally, one has to set a scale by fixing the ratio of the
running couplings in YM and QCD at a certain point. In our
setup, the characteristic scale is the critical temperature Tc.
For the phase transition to the confinement phase to take
place, the strong coupling usually needs to exceed a certain
critical value αsðTÞ ¼ αcrit. On general grounds, one can
argue that the critical values in YM theory and QCD are of
comparable size. This argument is supported by the fact

that the values of αcrit for the vertex couplings tend to
coincide. Consequently, we impose the condition

α
Nf¼0

s;HQ ðcT=TcÞjT¼Tc
¼ α

Nf¼3

s;HQ ðcQCDT=TcÞjT¼Tc
: ð12Þ

This fixes the scale factor as cQCD ¼ 0.79. Second, one has
to take into account genuine quark contributions that are
not encoded in the change of the running couplings.
Denoting the quark contributions to viscosity and entropy
as Δη and Δs, respectively, we write

η

s

����
QCD

¼ ηYM þ Δη
sYM þ Δs

¼ η

s

����
YM;αYMs →αQCDs

�
1þ Δη

ηYM

1þ Δs
sYM

�
; ð13Þ

and estimate the ratios Δη=ηYM and Δs=sYM using leading-
order perturbative results. For Nf ¼ 3, we find Δη=ηYM ≈
2.9 [38,39] and Δs=sYM ≈ 21

32
Nf ≈ 2.0 [40,41], leading to

an overall correction factor of approximately 4=3. Finally,
in the low-temperature regime, one has to replace the pure
glueball resonance gas by a hadron resonance gas (HRG).
In summary, the final estimate for QCD takes the form

(11) but with the following QCD parameters replacing the
corresponding YM values: aQCD ≈ 4=3a, bQCD ¼ 0.16ð1Þ,
δQCD ¼ 5, where bQCD results from a fit to the data from

Ref. [42]. Additionally, the full QCD αNf¼3
s;HQ ðcQCDT=TcÞ

with cQCD ¼ 0.79 replaces the pure-glue beta function,
whereas the perturbative exponent γ ¼ 1.6 remains
unchanged.
This procedure yields the final result shown in Fig. 4.

Plotted in terms of temperatures normalized by the respec-
tive critical temperatures, the QCD curve is shifted slightly
upwards compared to the YM result; see the inset of
Fig. 4. The shape resembles that of the YM result with a
minimum value of 0.17 at Tmin ≈ 1.3Tc.

FIG. 4 (color online). Estimate for η=s in QCD which shows a
minimum at Tmin ≈ 1.3Tc at a value of 0.17. The inset shows the
comparison to the YM results for temperatures normalized by the
respective critical temperatures.
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Summary and conclusions.—We have computed η=s in
pure YM theory over a large temperature range. The setup
is based on an exact functional relation for the spectral
function of the energy-momentum tensor involving full
gluon propagators and vertices. The only inputs are the
gluon spectral function and the running coupling αs
extracted from Euclidean FRG data [23]. As a highly
nontrivial result, the global temperature behavior of η=s can
be described as a direct sum of a glueball resonance gas
contribution with an algebraic decay at small temperatures
and a high-temperature contribution consistent with HTL
resummed perturbation theory. Finally, we have provided a
first estimate for η=s in QCD.
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