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Time is a valuable resource and it is expected that a longer time period should lead to better precision
in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that
in certain cases more time may even lead to worse estimations, which puts this intuition into question. In
this Letter we show that by including feedback controls this intuition can be restored. By deriving
asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can
provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under
the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the
dynamics and the gain of feedback controls in Hamiltonian parameter estimation.
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Implementations of quantum technology often require
full and precise information about the parameters that govern
the system evolution, which makes quantum Hamiltonian
parameter estimation a crucial problem. An important task of
Hamiltonian parameter estimation is to find out the ultimate
achievable precision limit with given resources and design
schemes to attain it [ [-16]. Typically, Hamiltonian parameter
estimation is achieved by preparing some initial quantum
state po and letting it evolve under the Hamiltonian H (x),
through the evolution p, = U,p,U%, where U, = ¢~ HWT,
the unknown parameter in the Hamiltonian is imprinted on
py; one can then estimate the parameter through measure-
ments on p,. This problem is well studied in quantum
metrology when the Hamiltonian is in the multiplicative
form of the parameter H(x) = xH; in this case it is known
that the optimal strategy is to prepare the initial state as
(Amax) + [Amin)/V/2), where | Amax(min)) 1 the eigenvector of
H for the maximum (minimum) eigenvalue; the standard
deviation of the optimal unbiased estimator of x then scales as
1/ \/W ; here, n is the number of times that the process is
repeated and J = (Ayax — Amin)> 7~ is the maximal quantum
Fisher information, where T is the time that the Hamiltonian
acts on initial states [3]. In this case the standard deviation of
the estimation scales as 1/T, showing that asymptotically
more time always leads to better precision, which is con-
sistent with our intuition. However, for general Hamiltonian
H (x), recent studies have shown different time scalings [17];
for example, if a Hamiltonian takes the form H(x) =
Blcos(x)o; + sin(x)o3], where
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are Pauli matrices, the maximum quantum Fisher informa-
tion is 4sin? BT, which oscillates with time [17,18]. Thus, for
general Hamiltonians more time may even lead to worse
precision; this is against our intuition. In this Letter we will
show that this intuition can be restored when feedback
controls are included.

Previous studies have obtained some lower bounds on the
precision limit with independent noises under feedback
schemes [8,14]. However, it was largely unknown when
feedback controls can actually help improve the precision
limit and how to actually design optimal feedback controls to
achieve better precision. In this Letter we present an optimal
feedback scheme that provides the maximal improvement in
the precision limit for general Hamiltonian parameter esti-
mation, we show that under the optimal feedback scheme the
precision limit displays a universal time scaling 1 /7, which is
independent of the form of the Hamiltonian. This restores the
intuition that more time always lead to better precision. Our
study also shows that the gain of feedback control is intri-
guingly connected to the noncommutativity in the dynamics,
while noncommutativity was previously thought to only play
arole at the measurement stage. We focus on single parameter
estimation; generalization to multiple parameters is possible,
but it is beyond the scope of this Letter.

Methods developed previously for computing the pre-
cision limit of general Hamiltonian parameter estimation

and
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are quite involved and it is hard to incorporate feedback
controls [17,18]. We first introduce a tool which is
computationally efficient and it is convenient to include
feedback controls.

The precision of estimating x from quantum states p, is
related to the Bures distance between p, and its neighboring

states Px+dx [5] s

1
dlz?oures(vapx+dx) = ZJ(px)dxz’ (1)

the Bures distance dp, is defined here as

dBures(pla/)2) =V 2 _2FB(/01’/72)’ (2)

where FB(pl,pz):Tr\//){/zpzp{/z is the fidelity.

Maximizing the quantum Fisher information J(p,) is then
equivalent to maximizing the Bures distance between p,
and its neighboring states. If the evolution is governed
by U, = "W with a general Hamiltonian H(x), then
T +
Px = XPOUX and Px+dx = x+dxp0Ux+dx; thus,
n}fOIXdzBures ( prO U)'C s Ux+dxp0 UL»dx)

= H}%X[z - 2FB<UXPOU;’ UerdxpOUierx)]' (3)

Denote By(U,, U, 4 ) as

Bé‘ ( Ux’ Ux+dx) = arccos n;inFB ( prO U/\]:a Ux+dxp0 U;-ﬁ-dx) ,
0

which we call the Bures angle between U, and U4, then

max, dg . (Px: Prrax) =2 —2cos Bo(U,, U, 4,). From
Eq. (1) we get
81 — By(U,,U
maxJ = lim [ cos 9( X x+dx)]. (4)

o dx—0 dx2

SinceFB(prOUfC,UdepoUde):FB(pO,U/pOU’T),where
U' = ULU,. 4y, we have By(U,.U, ) = By(I.U'). Let
e % be eigenvalues of U’, where 0}" € (—n,n] for
1 < j <d; here, d denotes the dimension of U’. We call

9}”, 1 < j <d the eigenangles of U’ and arrange 6V, =

OV >0y >...>0Y =0Y in decreasing order. Then,
if 0%y — 0%, <7 we have min, Fg(py. UpoU'") =
c08[(0fax = Oin) /2] [19-23].

If U, is continuous with respect to x, then when dx — 0,
U =U(x)U(x +dx) - I; thus, (0%, —60Y )/2—0.
Denote Cy(U) = (04, —0Y..)/2 for a given unitary
operator; then, for continuous dynamics when dx is
sufficiently small, By(U,. U, 4;) = Co(UiU,.4). From

Eq. (4) we get

1- !
maXJ — hm 8[ COS C@(ZU Ux+dx)]
Lo dx—0 dx

. 2 Cy(ULU,
16S1n2 9( x2 )Hrd)r)

= lim -
dx—0 dx
. sin Cew;"zumn 2cf,<U;f,x+dx>
= lim 16 :
dx—0 Co(UUssa) 2
2
4c3(Utu
— lim M 5
dx—0 dx

where for the last equality we used the fact that when
dx = 0, [Cy(UiU, 4y)/2] = 0 and lim,_,(siny/y) = 1.
The ultimate precision limit is then given by
1 1
5% > = . (0)

. 2C(ULU 4y
nmaXPOJ hmdx_m W \/ﬁ

where 7 is the number of the times that the procedures are
repeated.
If the Hamiltonian takes the multiplicative form

H(.X) = xH, Ux — e—ixHT’ UIUerdx — e—iHde; then,

(/‘Lmax - /lmin)T|dx|

Ca(chUerdx) = )
Equation (6) then recovers the well-known formula [3]
. 1
ox > . (7)

h \/ﬁ(lmax - )vmin)T

For general Hamiltonians, this also provides a straight-
forward way of calculating maximum quantum Fisher
information. We demonstrate it through an example, which
will also be used later to show the gain of feedback
controls. Consider the Hamiltonian H(x) = B[cos(x)o|+
sin(x)os], where x is the interested parameter, representing
the direction of a magnetic field in the XZ plane [17,18].
The Hamiltonian can be written compactly as H(x) =
Bla(x) - 6], where a;(x)=cos(x),a,(x)=0,a3(x)=sin(x).

If it evolves with time T, then U, = e~ HWT = -iBTlalx)d],
In this case,
U = Ul Upiae = BT[a(x)-3) —iBT(a(x-+dx)5] (8)
With a simple calculation, one gets
iBT[a(x)5] ,—iBT[a(x+dx)-3) eiB’[;’%]’ (9)

where &' is a unit vector and
cos B = cos*(BT) + cos(dx)sin?(BT) = cos?(BT)

+ (1 - dez) sin?(BT) + O(dx?)

d 2
—1- sinz(BT)%Jr 0(dx?). (10)
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FIG. 1. Hamiltonian parameter estimation with feedback

controls.

Since the eigenvalues of e?(@%) are e*' we have
erln]ax =B and Hgin:_B/; thus, (egax - 6%1{1)/2 = B/,

ie., Cy(UlU, 4) = B'. From Eq. (5) we then get

1—cosB

maxJ = lim 8 >— = 4sin?(BT).

dx—0 dx

This is consistent with previous studies [17,18]; however,
our method makes the computation much simpler.

We now include feedback controls. Under the feedback
scheme, the evolution is interspersed with feedback con-
trols, as shown in Fig. 1. The whole evolution is described by

Umt<x) = UmUt(x>" 'UZUt(x)Ul Ut(x)'

Here, U,(x) = e ™ with t = T/m, U\, U,, ..., U,, are
coherent controls. We assume the controls take negligible
time, which is a valid assumption in many physical settings.
For example, in most quantum metrology applications, the
field to be measured is usually very weak, while the controls
can be executed by relative strong fields thus take negli-
gible time.

We first derive optimal controls for the case of m = 2,
same strategy works in the general case. When m = 2,
Uy (x) = UyU,(x)U,U,(x), then

U;(x) Uy (x+dx)
= U] (x)UIU] (x)UU, U, (x+dx)U, U, (x+dx)
= Ul (x)U[U] (x) U (x+dx)] U [U,(x) U] (x)] U, (x+ dx)
= (U (x)UT][U} () U (x+dx)][U U (x)]
x [Ul (x)U,(x+dx)].

Since Cy|U3J,(x)Uy,(x + dx)] is determined by the eigen-
values of U}, (x)Us,(x + dx) and U, does not change the
eigenvalues in this case, so it can be chosen as any unitary.
This is reasonable, as the last control only rotates the final
state but does not change the maximal information that can be
extracted with measurements, as rotating the final state is
basically equivalent to taking the measurements in another
basis. We divide U, (x) Us, (x+dx) into two parts, [U] (x) U]
[UT(x)U,(x+dx)][U,U,(x)] and U] (x)U,(x+dx). Then,

ColUL, (x)Uni(x + dx)] < ClU; (x)U(x + dx)]
+ Co{[U () UYJ[U] (x) U, (x + dx)][U, U, (x)]}
= 2Cy[Uf(x)U,(x + dx)], (11)

where for the first inequality we used the following property
of Cy(U): Cp(U1U,) < Cy(Uy) + Cp(Us), if Cy(Uy) +
Cy(U,) < /2 (see the Supplemental Material [24]); for

T

the second equality, we used the fact that [U](x)U]
(U} (x)U,(x + dx)][U,U,(x)] has the same eigenangles
as U] (x)U,(x+dx). One obvious choice of control that
saturates the equality is U; = Uj(x), as it aligns
the eigenvalues of the two parts and the corresponding
maximal and minimal eigenangles add up. In this case,
Uy, (x)Usy(x+dx) = [U] (1)U, (x-+ dx) P, CglU, (x) Uny(x+
dx)|=2C,[U} (x)U,(x+dx)].

Previous results showing feedback controls do not
help when H(x) = xH [4] can be easily understood in
our framework, as in that case U,(x) commutes with
U,(x + dx). Thus, even when U, = [, i.e., without adding
any control, Cy[U}, (x)U,,(x + dx)] still achieves its maxi-
mal value, as [U](x)Uj|[U}(x)U,(x + dx)][U,U,(x)]
already equals to U (x)U(x + dx).

This analysis can be extended to general m straightfor-
wardly with

ColUnp(x) U,y (x + dx)] < mCo[Uf (x)U,(x + dx)].  (12)

where the equality can be saturated with the controls
U =Uy=---=U,_; =Ul(x) and an arbitrary U,,
and under the optimal scheme U}, (x)U,,(x + dx) =
[UT(x)U,(x + dx)]™. This scheme was also used as a
practical heuristic in recent studies of quantum
Hamiltonian learning [29-32].

In practice, the true value of x is a priori unknown.
Instead, an estimated value X has to be used for the
feedback controls; the controls Uy = U, =---=U,,_; =
U (%) need to be updated adaptively with the estimated
value. The maximum quantum Fisher information is
achievable asymptotically when X — x [33-39]. For exam-
ple, with H(x) = Blcos(x)o| + sin(x)os3], considering the
feedback scheme with a total evolution time 7 = mt, and

A

letting the controls U, = U, =--- = U,_; = U} (}), &
here is the estimated value of x, which we write as
% = (1 4+ f)x, where /3 calibrates the error in the estimation.
In Fig. 2 we plotted the Fisher information with different
values of f. It can be seen that for a broad range of f, the
feedback scheme gains over the uncontrolled scheme. At
the asymptotical limit # = 0, the feedback scheme attains
the maximum quantum Fisher information, which equals
to 4m?sin®(BT/m). This value is much higher than the
maximum Fisher information without feedback controls.
When m is sufficiently large, sin(BT/m)=(BT/m), the
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FIG. 2 (color online). Quantum Fisher information for param-
eter estimation of the Hamiltonian H (x) = B[cos(x)s; +sin(x)a3],
with B=1, T =1, and ¢t = 1/5; i.e., the evolution is inter-
spersed with five controls. The controls are taken as U] (%),
with ¥ = (1 + f)x, and the real value of x is assumed to
be 1. In this case the feedback controls gain, as long as
B € (—1.66,1.66).

maximum quantum Fisher information is then 4B>T?2. The
ultimate precision limit thus scales as 1/T.

This time scaling, 1/7, actually holds for any H (x) under
the optimal feedback scheme, which we will now show.
Assume the evolution is interspersed with m controls,

Upi(x) = UnU,(x)... UU,(x)U U (x).

Here, U,(x) = e~ (™" with t = T/m. Under the optimal
Strategy UIZUZZ"':Um—IZU-tI- (x)’ CB[UInt(x) Uml(x+dx>]
attains its maximal value mCy[Uj (x)U,(x 4 dx)]. If m
is taken as sufficiently large, i.e., t = T/m is sufficiently
small, then
U}L(x)Ut(x + dx) — piH(x)t p—iH (x+dx)t
= emiHlH+d)-HE)|T/m} — (13)

Thus,

[ﬂmax ()C, dx) - ﬂmin ()C, dx)]T

ColU (x)U,(x + dx)]= 5>

’

here Apax(min) (X, dx) denotes the maximum (minimum)

eigenvalue of H(x + dx) — H(x). Thus, when m is suffi-
ciently large,

Mmax (X, dx) - Amin(xv dx)]T
2 b
which gives the maximal quantum Fisher information

— . 2
maxJ = lim [’Imax (x’ dx) jmm (xv dx)]
dx—0 dx

mColU] (x)U(x + dx)]=

2. (14)

The ultimate precision limit is then given by

1 1

vnJ B \/ﬁlimdx—)() Amax(“rsdxl)d_x/“{min (x,dx) T

0% >

’

which displays the universal time scaling 1/7.

Note that without feedback controls, the precision
limit is determined by Cy[U}(x)Up(x + dx)], where
Ub(x)Ur(x + dx) = eHWT e=Hx+d0T sing the Baker-
Campbell-Hausdorff formula [40], it can be expanded as

~i[H (x-+dx)=H (x)]T+3[H (x)T.H (x-+dx)T] 4+

(15)
With optimal feedback controls, the precision limit is deter-
mined by Cg{[UTT/m(x)UT/m(x—l-dx)]’"}. When m is suffi-
ciently large, [U}. i Ut/m (x+dx)]" = Hx+dx)=HIT,
Thus the gain of the optimal feedback scheme is achieved
by eliminating the commutators due to noncommutativity in
the dynamics.

Besides measuring the direction of a magnetic field,
which is closely related to determining the orientation of
an object, noncommutativity arises frequently in practical
experiments. The standard quantum metrology model
assumes that the Hamiltonian takes the multiplicative form
H(x) = xH, which only includes the interaction between
the probe and the interested field. In real experiments,

however, there are often other interactions. For example, for
the nitrogen-vacancy (N'V)-center spin, the Hamiltonian is

piH)T p—iH(x+dx)T — ,

Hyy = D(S2 =2/3) + E(S2 = 82) + gugB - 5. (16)

where D ~ 2.87 GHz is the crystal field splitting between
the my=0 and m; = £1 sublevels, S is the spin-1 operator,

01 0
—— |10 1],
2
V210 1 o
S0 1o
S,=— -1 0o 1]
=5
V2l
10 0
s.=|o o o |,
00 -1

E is the crystal strain parameter which arises from the
coupling of the NV spin to the lattice strain (usually in
the megahertz range), g = 2 is the electron g factor, up is

the Bohr magneton, and B is magnetic field [41]. If the
magnetic field is along the Z direction, then the optimal
probe state should take a superposition of mg = +1
sublevels. The Hamiltonian can be effectively restricted
to the subspace of these sublevels,

110401-4
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B. E
Hy=|( ° = Eo, + B.os, 17
eff (E —BZ> 1 z03 ( )

where we have absorbed gup into B,. Using the tools
introduced, it is easy to calculate the maximal quantum
Fisher information for measuring B,: without feedback
controls, the maximal quantum Fisher information is

B% ) E2 2 2 2
4 T in2(\/B2 + E2T)|,
{B%Ez e e )}

with feedback controls (in this case it can also be achieved
by applying relative strong z pulses along the o5 direction),
it can reach 472. The gain of feedback control can reach
(B? + E?)/B? when T gets large. For a small B,, which the
NV center is mostly used for, this can be significant.
Similarly, feedback controls can also gain when NV centers
are used to measure temperature, pressure, and mechanical
force [42-44] due to the noncommutativity in the
dynamics.

Noncommutativity can also arise when multiple spins are
used, as couplings between the spins may not commute
with the interested field [45,46]. Besides quantum metrol-
ogy, in other applications of Hamiltonian parameter
estimation—for example, in quantum process tomography
[47]—the structure of the Hamiltonian is often known and
one needs to estimate some parameter in the Hamiltonian,
where noncommutativity is usually generic.

With the presence of noise, even if the Hamiltonian takes
the multiplicative form, the noisy part can make the
dynamics noncommuting. For example, consider the fol-
lowing two dynamics:

. .| 0: 4

p =t [fx,p] +§(0'3,00’3 -p),

. .|o 4

p =i [fx,p] +3 (01001 = p). (18)

The first represents a dynamics with both the magnetic field
and the noise along the Z direction and thus commuting
with each other; the second represents a dynamics with the
magnetic field along the Z direction but noise along the X
direction and thus not commuting with each other. It turns

out that for the first dynamics, the feedback control U] (x)
cannot improve the precision limit, while for the second
dynamics it does improve. Actually, recent studies have
shown that by using quantum error correction techniques,
feedback controls can extend the time scaling to 1/7 for the
second dynamics, as in that case the noise is perpendicular
to the Hamiltonian and thus correctable with the aid of an
auxiliary system [48-53]. Our numerical simulation also
shows that even when the noise is not perpendicular to the
Hamiltonian—for example, when the noise is along the
direction (6, + 03)/v/2—feedback controls still help to
improve the precision limit, as in this case the dynamics
still does not commute. We note that with the presence of

noise, both U] (x) and quantum error correction techniques
may not be optimal. Finding the optimal feedback control
will be a future research subject. Previous studies have
given some upper bounds on the maximum quantum Fisher
information under the feedback scheme when the dynamics
are full rank [8,14], where it was shown that, generally,
there is only a constant improvement over the the standard
quantum limit. The time scaling thus cannot be extended to
1/T for those cases. However, in general—including those
cases where the dynamics are of full rank—Ilittle was
known when and how feedback controls can actually help
to improve the precision limit, which is of practical
importance. By revealing the intriguing connection
between the gain of feedback scheme and noncommuta-
tivity in the dynamics, our study has significantly advanced
the understanding of these problems.

Summary.—We derived an asymptotically optimal feed-
back scheme for Hamiltonian parameter estimation and
showed that, under this scheme, the ultimate precision limit
has a universal time scaling. This restored the intuition that
time is always a valuable resource when the evolution is
unitary. Our study also revealed that the gain of feedback
schemes is intriguingly connected to the noncommutativity
in the dynamics. The efficient tool developed here for
computing the maximal quantum Fisher information can be
extended to the noisy case [54], which is expected to have
wide applications in quantum parameter estimation.
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