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We report the self-organization of microfluidic emulsions into anomalously homogeneous structures.
Upon periodic driving confined emulsions undergo a first-order transition from a reversible to an
irreversible dynamics. We evidence that this dynamical transition is accompanied by structural changes at
all scales yielding macroscopic yet finite hyperuniform structures. Numerical simulations are performed to
single out the very ingredients responsible for the suppression of density fluctuations. We show that, as
opposed to equilibrium systems, the long-range nature of the hydrodynamic interactions are not required
for the formation of hyperuniform patterns, thereby suggesting a robust relation between reversibility and
hyperuniformity which should hold in a broad class of periodically driven materials.
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What is the most effective way to homogeneously fill
space with an ensemble of particles? At thermal equilib-
rium, an obvious effective strategy would be to endow the
particles with interactions promoting the formation of a
crystal. In a d-dimensional system, thermal fluctuations
would spontaneously organize the particles into an ordered
state where the average position of the particles is a perfect
lattice. The number fluctuations of these averaged positions
would scale as ΔN2

l ∼ ld−1 in boxes of size l; crystals are
hyperuniform [1]. At large scales, they are much more
homogeneous than a random set of points with number
fluctuations of the order of the box volume ld. However,
perfect crystals are not the only patterns being hyperuni-
form [1,2]. Over the last decade much attention has been
devoted to disordered structures displaying miniature
density fluctuations. As it turns out, such hyperuniform
patterns have been shown to display outstanding optical
properties such as complete photonics band gaps [3–5].
Until very recently the only two controlled strategies to
engineer hyperuniform materials were based on numerical
optimization techniques [3,5,6], or the jamming of athermal
hard spheres [7–11]. In 2015, two sets of numerical
simulations have demonstrated that hyperuniformity
emerges when ensembles of particles driven out of equi-
librium approach a critical absorbing phase transition
[12,13]. However, these numerical models based on elegant
toy models lack a truly analogous physical system, in
which hyperuniformity emerges from genuine physical
interactions.
In this Letter we demonstrate for the first time an

experimental system in which self-organization into hyper-
uniform patterns occurs away from the jamming point.
The system consists of a periodically driven emulsion, in
which maximal hyperuniformity is reached at the onset of
reversibility of the droplet dynamics, even though the

emulsion does not reach a genuine absorbing state. We
also identify the minimal ingredients required to produce
hyperuniform emulsions by means of numerical simula-
tions. Surprisingly, we show that long-range interactions
impair the emergence of hyperuniform structures. We
therefore conjecture that hyperuniformity is intimately
related to reversibility in periodically driven systems. We
believe that this work opens new possibilities to control the
self-organization of a broad class of systems (vortices in
superconductors, soft glasses, colloidal suspensions, …)
into hyperuniform structures and provides potential new
avenues to high-yield and controllable design of isotropic
band gap materials [3–5].
The experimental setup is the one used in Ref. [14]

consisting of flowing a monodisperse emulsion (area
fraction: 0.36) in a microfluidic channel (0.5cm×5cm×
27�0.1μm). The droplets have a diameter a¼25.5�0.5μm
comparable to the height of the channel and therefore
undergo two-dimensional motion. The inlet of the channel
is connected to a syringe pump that drives the suspension
sinusoidally. The emulsion is prepared in a reproducible
initial state reached after a sequence of 10 high-amplitude
oscillations. Then, a sequence of 103 cycles at the desired
amplitude is applied to ensure that the measurements are
performed in a statistically stationary state. The mean
displacement of the droplets occurs along the main flow
direction and is sinusoidal, and its amplitude Δ is the sole
control parameter of the experiments. The data are
collected by tracking the instantaneous position of
∼3 × 103 droplets remaining in the field of view throughout
the entire flow cycle. Two snapshots of the emulsion are
shown in Figs. 1(a) and 1(b) and correspond to Δ ¼ 18.3a
and Δ ¼ 43.3a, respectively.
Following Ref. [15] the macroscopic reversibility of the

system is measured by determining the fraction of active
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particles fa, which is the fraction of droplets that behave
irreversibly. A droplet is here defined to be active if it does
not return at the end of a cycle within the spatial extent of
the Voronoï cell it occupied at the start of the cycle. In these
microfluidic experiments, the viscous flows are reversible
in time [14]. However, above a driving amplitude Δ⋆=a ¼
28.1� 0.3 the droplet dynamics abruptly becomes irre-
versible. A macroscopic fraction of the droplets remains
endlessly active upon periodic driving as illustrated in
Fig. 1, and quantified in Fig. 2(a), where fa is plotted as a
function of driving amplitude.
As fa is constructed from a metric-free criteria, it is both

affected by the changes in the dynamics, and in the
structure of the emulsion. We now disentangle and eluci-
date these two concomitant collective phenomena. Let us
begin with the dynamical arrest of the strobed dynamics.

The reversible states where droplets retrace their steps back
to their initial Voronoï cell, Δ < Δ⋆, do not correspond to
interaction-free conformations: in the course of the cycles,
even the passive particles continuously interact with all the
other droplets via hydrodynamic interactions. They also
a priori experience a number of weak but irreversible
perturbations such as short-range potential interactions, or
minute shape deformations which cannot be experimentally
measured. As a result, even in the reversible regime, they
return only on average to their initial position after a cycle.
The transition to an irreversible state where all the particles
are active is associated with a discontinuous amplification
of the mean-square displacement of the strobed dynamics
[16], thereby causing the escape of the droplets from their
initial Voronoï cell. We characterize the fluctuations of the
strobed dynamics by the distribution of the modulus of
the displacements in the flow direction at the end of each
cycle in Fig. 2(b). At the onset of irreversibility this
distribution is not merely widened, the statistics of the
droplet displacements undergoes a sharp qualitative change
at Δ⋆ thereby confirming the collective nature of the
dynamical arrest. The strobed-displacement statistics is
Gaussian for high Δ. Unexpectedly, below Δ⋆ the dis-
placement statistics converges to a non-Gaussian universal
distribution that is much broader. The decay of the
distribution is consistent with an exponential tail which
captures the existence of large-amplitude jumps typically
corresponding to droplets exiting their Voronoï cell. These
intermittent displacements are akin to the cage jumps found
in glass forming liquids [17]. Importantly, these results
imply that the dynamical arrest of the strobed dynamics
does not belong to the absorbing-phase-transition scenario
reported in Refs. [12,13,15,18].

(a) (b)

FIG. 1 (color online). Close-up of the emulsion at the beginning
of the 500th cycle. The active droplets are shown as open orange
circles, the passive droplets as filled blue circles. (a) For a driving
amplitude Δ=Δ⋆ ¼ 0.65, the dynamics is reversible. (b) For a
driving amplitude Δ=Δ⋆ ¼ 1.54, the dynamics is not reversible
anymore. Note also the markedly different structure in the two
cases: for low amplitudes the structure is more homogeneous.

(a) (b) (c)

FIG. 2 (color online). (a) Fraction of active particles fa in the steady state at various oscillation amplitudes. At Δ ¼ Δ⋆ reversibility
abruptly breaks down. Inset: Variations of the mean-squared strobed displacement in the flow direction hδx2i plotted as a function of Δ.
(b) Centered and normalized probability density distribution of the strobed displacements of the droplets, jδxj, in the flow direction for
the experiments (top curves) and numerics (bottom curves). The numerical curves have been shifted for the sake of clarity. The color
indicates the mean fraction of active particles. See color bar in (a). (c) Structure factor SðkÞ at various amplitudes [Experiments: thin
lines, simulations: Thick lines, Same color code as in (b)]. For sake of clarity the curves corresponding to Δ < Δ⋆ have been shifted
down by a constant value. The dashed line is a guide and corresponds to k0.45.

PRL 115, 108301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

108301-2



We now focus on the central results of this Letter and
demonstrate the emergence of hyperuniform structures.
Having a quick look back at Fig. 1, we see that the
configuration in the reversible regime looks much more
homogeneous than in the irreversible regime. In order to
quantify this apparent structural change, we compute the
structure factor SðkÞ of the emulsion at various amplitudes,
Fig. 2(c). The existence of a structural transition at the onset
of reversibility is very noticeable from the sudden change
of SðkÞ across all scales. The shift of the high-k peak of the
structure factor corresponds to the change of the liquidlike
structure reported in Ref. [14]. However, the most striking
feature at the transition occurs at low k. For high driving
amplitudes (upper curves), SðkÞ plateaus to a finite value as
k goes to 0, indicating the absence of long-range order. In
contrast, at low amplitudes (lower curves) SðkÞ decays
algebraically as k goes to 0, large-scale density fluctuations
are suppressed [1]. The emulsion seems to self-organize
into a hyperuniform state.
In order to quantify the degree of hyperuniformity and

the extent of the hyperuniform regions, we go back to real
space and directly measure the statistics of the droplet
number Nl in a l × l box [1,12]. Figure 3(a) shows the
variations of the varianceΔN2

l ≡ hN2
li − hNli2 normalized

by hNli as a function of l. Any ensemble of particles with
no spatial correlation whatsoever has a variance that scales
as ΔN2

l ∼ hNli. Therefore, ΔN2
l=hNli is a decreasing

function of l for hyperuniform systems. In Figure 3(a)
we quantify the level of hyperuniformity of the emulsions
by normalizing the variance ΔN2

l by that of a random set of
points of the same size and density. This procedure is used
to minimize any statistical artifacts due to the finite sample
size. For sake of clarity we have shifted the curves starting

from small driving amplitudes at the top. For large drivings
ðΔ ≫ Δ⋆Þ, ΔNl=hNli does not show any significant
variations. The density fluctuations are normal. Con-
versely, as the dynamics becomes reversible ðΔ < Δ⋆Þ,
the emulsion becomes locally hyperuniform. ΔN2

l=Nl
indeed first decays algebraically with l up to a box size
lHU above which it increases. We expect the variations to
then saturate for high values of l that are not accessible
with our experimental setup. This nonmonotonic behavior
is very similar to that reported first in Ref. [12], at the onset
of an absorbing phase transition.
More quantitatively, the system homogeneity is quanti-

fied by the exponent λ > 0 defined as ΔN2
l=hNli ∝ l−λ.

For a random set of points λ ¼ 0, while λ ¼ 1 for perfect
crystals. In Fig. 3(b) the exponent λ fitted for small l is
shown as a function of the driving amplitude Δ.
Interestingly, the closer the system to the reversible
transition, the more the density fluctuations are suppressed.
At Δ ¼ Δ⋆, we find that λ ∼ 0.5, which is again close to the
one reported for systems close to an absorbing phase
transition (λ ∼ 0.45) in Ref. [12] and in Ref. [13] at
intermediate scales.
The extent of the hyperuniform regions is characterized

by measuring the length lHU, where ΔN2
l=hNli deviates

from a decreasing power law, Fig. 3(c) [16]. This length
scale undergoes nonmonotonic variations with the driving
amplitude. When increasing Δ, lHU decays from ten to five
droplet diameters around Δ=Δ⋆ ∼ 0.7. Then approaching
the reversibility transition lHU increases again to its
maximal value (∼10a) before dropping down to zero above
Δ⋆. Two comments are in order. First, we do not see any
sign of a divergence of lHU as Δ approaches Δ⋆, which
means that the emulsion never self-organizes into a fully

(a) (b) (c) (d) (e)

FIG. 3 (color online). (a),(b), and (c) Normalized density fluctuations for experiments (a), simulations with long-range interactions (b),
and short-range interactions (c). The curves are offset for the sake of clarity. At high amplitudes (red curves) the density fluctuations are
normal, whereas in the reversible regime, at low amplitudes (blue curves), the density fluctuations are suppressed. (d) Fitted power-law
exponents λ from the curves plotted in (a),(b), and (c). The lines are guides to the eye. Density fluctuations are only suppressed for
Δ≲ Δ⋆. (e) Extent of the hyperuniform regions lHU. Filled symbols: experiments, open symbols: simulations. The lines are guides to
the eye. The system is only hyperuniform up to length scales of ∼10a (∼15a) in the experiments (in the simulations).
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hyperuniform state where the density fluctuations would be
suppressed at the entire system scale. However, the typical
extent of the hyperuniform regions are much larger than the
typical distance below which the droplets display transla-
tional order. The pair correlation function of the emulsion
decays exponentially over distances that are at most of the
order of a couple of particle diameters [16]. Second, the
rather complex variations of lHU contrasts with that of all
the other structural and dynamical quantities which only
display a significant change at the transition point Δ⋆. A
potential explanation is that the intrinsic slowing down of
the strobed dynamics below Δ⋆ makes the hyperuniform
self-organization too slow to be experimentally achieved,
although all the other (local) observables have reached a
steady state.
What causes this emulsion to self-organize into

hyperuniform large-scale structures? The droplets in the
experimental system interact through various forces: hydro-
dynamic forces that are time reversible, but also short-range
irreversible forces such as depletion, van der Waals, and
electrostatic forces that are specific to the nature of the
fluids and surfactants forming the emulsion. To find out
which of these ingredients are relevant to achieve hyper-
uniformity, we perform numerical simulations using a
model containing only minimal hydrodynamic interactions
and steric repulsion due to the finite size of the droplets.
The flow induced by a moving droplet in a geometry as
used in the experiment is described by a potential-flow
dipole [19]. Each of the 896 droplets is advected by the
local flow uðrÞ with the friction being modeled through a
mobility coefficient 0 < μ < 1. The equation of motion for
droplet i is _ri ¼ μuðriÞ. Assuming pairwise additive
interactions, the flow at the location of particle i is uðriÞ
is the sum of the contributions from the driving flow u0, and
from the flow induced uj by all other particles i ≠ j in the
system. The full equations of motion are

_ri ¼ μ

�
u0ðtÞ þ

X
j≠i

2r̂ijr̂ij − 1

2πjrijj2
· σj

�
; ð1Þ

where σj is the dipole vector associated with the particle j.
The strength of the dipole is proportional to the velocity of
this particle relative to the ambient fluid. The boundary
conditions in the flow direction are periodic, whereas the
flow is bounded by walls in the transverse direction.
The infinite number of dipole images that arise due to
this are modeled analogous, as in Ref. [20], and is described
in the Supplemental Material [16].
This minimal model correctly accounts both for the

dynamical and structural transitions. A reversible-to-
irreversible transition occurs as the driving amplitude Δ
is varied, Fig. 2(a), open symbols. The dipole strength
which is our sole free parameter, is set to match the
experimental value of Δ⋆. Without any additional adjust-
ment, we see that the same dynamical changes occur as in

the experiments, Fig. 2(b). The shape of the probability
density abruptly changes across the reversibility transition
in similar ways as observed in the experiments. Similarly,
the structure above and below the transition are markedly
different at all scales, Fig. 2(c). Again, the computed
structure factor shares the same salient features as the
experimental one.
Our simulations quantitatively capture the emergent

hyperuniform structures in the reversible regime, Fig. 3.
Both the exponent λ and the extent lHU of the hyper-
uniform regions are consistent with the experimental
measurements, Figs. 3(b) and 3(c). This agreement unam-
biguously demonstrates (i) that hyperuniformity chiefly
stems from the combination of reversible hydrodynamic
interactions and short-range repulsion, and (ii) that this
phenomenology is robust to the very details of the inter-
actions between the droplets and of their near-field flows.
In order to gain more physical insight, we now question

the importance of the long-range (∼r−2 in 2D) nature of the
interactions, which are very specific to hydrodynamics.
Long-ranged interactions can yield hyperuniform disor-
dered states at thermal equilibrium [21]. A natural question
is, therefore, does the emergence of hyperuniformity
depend on the long-range nature of the particle-particle
interactions in this nonequilibrium system as well? To
answer this question, we perform the same simulations as
above, but apply a very short-ranged cutoff to the hydro-
dynamic interactions of the form Θð2a − jrijjÞ, where Θ is
the Heaviside function, keeping all the other parameters
unchanged. We shall stress that this screening preserves the
reversible nature of the microscopic dynamics. As is
evident from Fig. 2(a), the same reversible-to-irreversible
transition, yet smoother, is observed, thereby further
demonstrating the robustness of our main findings.
Counterintuitively, the extent of the hyperuniform regions
is clearly not reduced by screening: it extends up to the
entire simulation window. As opposed to equilibrium
systems, long-ranged interactions impair hyperuniform
self-organization. This observation might be explained
by a change in the nature of the reversibility transition
from first order to critical when the interactions are short
ranged. This hypothesis is supported by the sharp increase
of the structural relaxation time at Δ⋆ [16], which is not
observed for unscreened interactions. In addition, this
critical scenario is consistent with that reported in
Refs. [12,13,15,22] where short-range interactions are
involved. However, a thorough finite-size scaling analysis
that goes beyond the scope of this Letter would be required
to unambiguously confirm that long-range interactions
suppress criticality in our system.
Together with that of Refs. [12,13], our experimental and

numerical results strongly suggest that any ensemble of
particles at the onset of a reversible-to-irreversible tran-
sition should self-organize into anomalously homogeneous
patterns. This robust feature could be effectively used to
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assemble a broad class of materials into hyperuniform
structures from colloidal suspensions [15,23–25], to soft
glasses [22], to shaken grains [26] to vortices in super-
conductors [27].
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