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Neurons communicate with each other dynamically; how such communications lead to consciousness
remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity
and information integration in a hierarchical network, in which edges are stochastically defined by a single
parameter p representing the percolation probability of information transmission. We validate the model by
comparing the transmitted and original signal distributions, and we show that a basic version of this model
can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions
from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep
divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony
and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of
consciousness during anesthesia. The model offers mechanistic insights into the emergence of information
integration from a stochastic process, laying the foundation for understanding the origin of cognition.
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Structural and functional neuroimaging studies have
mapped the connectivity of neuroanatomy and networks
at ever-increasing resolutions [1–5]. However, analyses that
assign cognitive roles to structural or functional regions
demonstrate a mechanism based on functionalism and not
on neurobiological first principles, thus failing to bridge
matter and mind [6]. In most analyses, cognition is claimed
to arise in a large-scale functional network exhibiting
coactivation of brain regions during a given task [4].
Although this definition of cognition usefully relates
structure to function [4], its theoretical framework is
circular and offers limited value in understanding the basic
principles governing the emergence of cognition.
Circumventing this theoretical gap, several studies have

modeled individual electroencephalographic (EEG) fea-
tures associated with loss of consciousness during general
anesthesia [7–15]. These include the use of dynamic causal
modeling to describe EEG spectral power under anesthesia-
induced unconsciousness [15], the use of metabolism
dynamics to account for burst suppression [12], and the
development of a stochastic model to describe general
anesthesia as a thermodynamic phase transition [7,8]. In
addition, a more detailed account of anesthetic effects on
ion channels was used to parameterize a mean-field theory
of electrocortical activities [16]. An information integration
theory [17] treated consciousness as a unified state in a
complex system that gains quantifiable information as a
whole relative to the parts. An empirical measure was
recently developed to assess information integration under

different conscious states [18]. However, few theoretical
advances explain multiple EEG features while accounting
for information flow and integration ab initio, and without
making causal assumptions of the system. A systems-level
theory is needed to explain sensory processing under deep
anesthesia [19]: No existing model accounts for EEG
features under anesthesia, disruption of information flow,
and neurobiological function together.
Here, we apply neurobiological first principles to infor-

mation transmission in a neural network constructed on the
basis of the thalamocortical and corticocortical topology.
We use percolation theory [20] to calculate information
access between nodes. By varying only one parameter
governing the probability with which an edge is connected,
the model reveals coherence emergence at a critical thresh-
old. It generates stereotypical EEG features under general
anesthesia while reproducing dose-response characteristics
for loss of consciousness. Linking the loss and gain of
information access to anesthesia induction and emergence,
the model provides a fundamental theory of information
emerging from a stochastic process and suggests that
cognitive features are enabled as a phase transition.
We consider a layered hierarchical fractal structure

ascending from an input node to multiple output nodes.
The layered configuration abstracts laminar and divergent
organization in mammalian thalamocortical structures
[21–23] (see Fig. S1 in the Supplemental Material [24]).
We create layers by scale-invariant fractal expansion and
generate small-world properties among nodes within each
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layer using the Watts-Strogatz algorithm [27]. Scale invari-
ance and small-world organization of brain networks
have been well justified [28–33]. Edges are directional
(wij ≠ wji) to reflect the counterstream architecture of the
human brain [34]. Importantly, we distinguish anterior from
posterior nodes by assigning different edge weights in the
feedforward and feedback directions.
Let AiðtÞ and PjðtÞ denote the neural activity of node i

and the preceding input from node j at time t, respectively.
AiðtÞ is the weighted average of activities from all input
nodes,

AiðtÞ ¼
P

j wijPjðtÞ
P

j wij
¼ wiiPiðtÞ þ

P
j≠i wijPjðtÞ

wii þ
P

j≠i wij
; ð1Þ

where wij is the weight of a directional edge from node j to
node i, and the input function PjðtÞ represents the accu-
mulated history of neural activity from the preceding m
time steps, weighted by exponentially decaying memory,

PjðtÞ ¼
P

m
τ¼1 e

−τAjðt − τÞ
P

m
τ¼1 e

−τ : ð2Þ

We used percolation theory [20] to stochastically assign
weights wij to edges using a sampling function, with
probability p representing likelihood of activity transmission,

wij ¼
�
CDFðU½0; 1�Þ i ≠ j

ce−λ
P

k≠i
wki i ¼ j

; ð3Þ

where CDF is the Gaussian cumulative distribution function
centered at 1 − p with a standard deviation of 0.05 (Fig. S2
[24]),U½0; 1� is the standard uniform distribution, and c and λ
are constants. As p is lowered, the probability of activity
transmission along individual edges is reduced, representing
the inhibition of information flow under anesthesia. Although
different anesthetic classes act differently at molecular and
cellular levels, with some potentiating inhibitory neurotrans-
mission and others inhibiting excitatory neurotransmission,
the net effect can be abstracted as a global inhibition of
arousal [35]. For i ≠ j, the sampling process of wij is
independently varied by p. For i ¼ j, wii is the memory
of the past activity of the same node and is influenced by the
incoming connection strength. Self-connection dominates
when all non-self-connections diminish (i.e., whenP

k≠iwki → 0). Because neuronal transmission, including
axonal propagation and synaptic events, involves cycles of
receptor inactivation, activation, and deactivation or desensi-
tization, we account for this dynamic behavior by periodi-
cally resampling edge weights using the sampling process
above. The resampling periodicity is proportional to e−αp,
where α is a constant.
We first validate the theory against previous experimen-

tal EEG studies under general anesthesia, using several
clinically observed features as evaluation criteria. Four key

features are hallmarks of global EEG responses: (1) char-
acteristic EEG waveforms, including burst suppression
under deep anesthesia [36]; (2) an EEG power shift to
lower frequencies with increasing anesthetic concentrations
[37]; (3) synchronization of cortical nodes [38]; and (4) shift
of α and δ power to the anterior, which is termed
anteriorization [39]. Our model reproduces all of these
clinical features simultaneously. The methods are detailed
in the Supplemental Material [24].
Typical time-domain signals on a randomly selected

output node are depicted in Fig. 1(a). Two different
fractalizations yield a similar dependence on p. The
waveforms strikingly resemble clinical EEG features under
different anesthesia depths [40]. As p is lowered, the
dominant output frequency decreases while the amplitude
increases, as revealed by the spectral density in Fourier
analyses [Fig. 1(b)]. Contrary to the simplistic picture of
decreasing information flow during diminishing network
connectivity, power rises significantly at p ¼ 0.7 in the β

FIG. 1 (color). Information percolation in a neural network.
(a) Output activities are plotted for various p on a randomly
selected node in a one-to-four fractalization network. Input
amplitude was scaled to p ¼ 1. The output reproduces several
clinical EEG features. At p ¼ 0.2, burst suppression is observed.
(b) Fourier analysis, averaged from 40 replicas on randomly
selected output nodes, reveals a frequency shift upon network
inhibition. Around p ¼ 0.7, frequency shifts from the β to α
range. Power concentrates toward the α and δ ranges with
decreasing p. (c) Burst suppressions become evident at low p.
Corresponding time-domain activities are superimposed onto
spectrograms depicting frequency components of the bursts.
Without losing generality, 50% random noises were added to
a 115-Hz sinusoidal signal as input.
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(12–30 Hz), α (8–12 Hz), θ (4–8 Hz), and δ (<4 Hz)
ranges. When a critical portion of the edges is cut
(p ≈ 0.5–0.3), the spectral density rapidly concentrates
into δ. At very low values of p, the network output exhibits
bursting δ waves [Fig. 1(c)] that resemble burst suppression
under deep anesthesia. As p approaches 0, the output
flatlines, corresponding to isoelectric activity of a com-
pletely inhibited brain. These results agree with clinical
observations of an EEG power shift from the γ and β bands
to the α and δ bands during anesthesia [37].
The results from the model suggest that the underlying

mechanism of burst suppression is edge resampling due to
receptor desensitization and reactivation in a dynamic
network. Decreasing p reduces the probability for signals
to percolate to the cortex, leading to prolonged quiescence
periods. However, when edge weights are dynamically
refreshed, even at very low p, some signals transiently
percolate through stochastically connected edges to reach
the output layers, and appear as short bursts between long
suppressions.
We also observe that frequency shift is an emergent

phenomenon, occurring precipitously in a specific range of
edge probabilities. The rapid power shift to lower frequen-
cies matches clinical EEG features at a critical anesthetic
concentration where consciousness is sharply and com-
pletely lost. Remarkably, this clinical feature is reproduced
in random networks without a high graph density, sug-
gesting that loss of consciousness is not localized to a
specific set of neurons or receptor types, but is due to
large-scale, distributed action on network connectivity.
Importantly, this phenomenon is input invariant and intrin-
sic to the dynamic process of edge connectivity.
The synchronization of output with input occurs in the

same frequency ranges when power concentrates to the β,
α, and δ bands. Figure 2(a) displays input-posterior output
synchronization; an identical pattern was observed between
input and anterior output. When p is lowered to 0.5–0.7,
cortical and thalamic nodes are strongly correlated in the β,
α, and δ frequencies. As p is further lowered to 0.3–0.5,
thalamocortical coupling exhibits a narrow band of strong
synchronization in the γ (30–75 Hz) and β (16–30 Hz)
bands. The appearance of this strong thalamocortical
synchrony at p ∼ 0.3 indicates information integration,
whereby chaotic signals at p < 0.3 become ordered and
recognizable in the output. The γ activity in a severely
inhibited network is similar to near-death EEG activity
[41]. Corticocortical synchronization was also observed
among output nodes. Agreeing with clinical observations
under deep anesthesia [38,42,43], corticocortical synchro-
nization in a heavily cut network occurs predominantly in
the δ and θ frequency ranges [Fig. 2(b)].
EEG anteriorization during anesthesia reflects asymmet-

ric network activity. To understand its underlying mecha-
nism, we investigated various conditions that could support
asymmetric distribution of spectral power when p was

reduced. We observed anteriorization only when feedback
weights were greater than feedforward weights. Figure 3
displays Fourier transformations of neural activity in the
outermost layer of a four-degree five-layer fractal network.
Anteriorization is evident in the α and δ frequencies when
the feedback:feedforward ratio is 10∶1, and it co-occurs
with frequency downshift and thalamocortical synchroni-
zation, signifying a shared mechanism of the same stat-
istical process. Altering ascending projection probabilities
to anterior or posterior nodes failed to produce anterioriza-
tion, which suggests that anteriorization results from the
inhibition of corticocortical rather than thalamocortical
communications. Literature on the comparative density
of feedback projections in the visual system supports this
finding [3,34,44,45]. Although counterintuitive, the result
underscores fundamental differences between steady-state
and dynamic networks, in which the response to change
dominates the output. As edges are incrementally cut, a
network with denser (greater weight) feedback projections
has a disproportionally higher probability of losing its
feedback information flow. Our model suggests that shifts
of low-frequency power to the network anterior result from
an exaggerated disruption in the feedback direction. This
offers an alternative interpretation for the preferential
inhibition of feedback connectivity during general anes-
thesia [46], which occurs due to a higher baseline density of
feedback connectivity under unanesthetized conditions.
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FIG. 2 (color). Thalamocortical and corticocortical coherence.
(a) Thalamocortical coherence, measured as cross-spectral density
averaged from 40 replicas on randomly selected posterior nodes, is
plotted as a function of p. Patterns for anterior nodes are similar.
Until p ≈ 0.8, no coherent activity is dominant at any frequency.
With further inhibition, thalamocortical coherence appears in the β
range, and it lowers to the α range at p ≈ 0.6. Between
p ≈ 0.5–0.3, a band of γ coherence is visible. (b) Corticocortical
coherence between two randomly selected nodes in the output
layer appears in the α and δ ranges for p < 0.6. Coherence
frequencies further decrease with p. To maximize test stringency,
simulations were performed using random noise as input.

PRL 115, 108103 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

108103-3



Our model makes no a priori assumptions about
molecular, cellular, or metabolic mechanisms of the net-
work, nor does it specify constraints on connections within
layers; this ensures the system’s universality and scalability.
By conceptualizing global arousal as stochastic edge
percolation among brain centers, our model is necessarily
coarse-grained; it does not consider drug- and receptor-
specific properties. Yet the success of such a simple
statistical model in producing multiple salient EEG features
under anesthesia suggests that it simulates information
transmission at a fundamental level and provides theoretical
confidence in its predictive power.
A theoretical prediction, which is of general interest in

neuroscience, is when and how cognitive features, such as
sensory access, arise in an artificial network. We use the
criticality of a chaos-order state transition as a surrogate
measure to define the accessibility of information-encoding
dynamics of a given node at other nodes. We determined
conditions under which information is statistically pre-
served by analyzing the divergence of the time-domain
signal distributions when the output at a randomly selected
node is used to represent the input. We quantified perco-
lation loss as an increase in bitwise information entropy
measured by Kullback-Leibler (KL) divergence, or
KLðP∥QÞ, where P and Q are probability distributions
of input and output, respectively [47]. An order parameter
is defined, as detailed in the Supplemental Material [24].
Figure 4 shows how order emerges sharply as the network’s
edge probability increases from 0 to 1. Information entropy
[Fig. 4(a)] drops precipitously at p ≈ 0.3. The dichotomous
dependence of KL divergence on p for encoded information
content is plotted in Fig. 4(b). A clear phase transition—with
more pronounced fluctuations—occurs around p ≈ 0.3. To
illustrate this transition graphically, we percolated a time
series encoding the pixel intensities of an 8-bit grayscale

image through the network under different values of p,
and examined the threshold at which the integrity of the
image was “recognizable” in the output layer. We calculated
KLðP∥QÞ − KLc for 256 different intensities (8 bits of
information) with systematically varied values of p. Each
output pixel intensity was determined stochastically from
2½KLðP∥QÞ−KLc� random values between 0 and 256 (i.e.,
KLðP∥QÞ − KLc bits of information) including the correct
pixel intensity in the input image. Figure 4(c) shows a series
of images decoded randomly at any node in the output layer
at different percolation probabilities. A discernible image
emerges sharply between p ¼ 0.30 and p ¼ 0.32. Recall
that thalamocortical synchronization emerges in the γ and β
band in the same range of p [Fig. 2(a)].
The sharp emergence of order with a precipitous drop in

entropy approximates the steep dose-response curve for
transitions between brain states during general anesthesia.
More remarkably, no network connection is deterministic,
because weight reassignments stochastically switch any
given edge between open and closed. Moreover, graph
density in our network is relatively sparse, suggesting that
supporting high-level information features does not require
dense connectivity. That the integrity of the input image in
Fig. 4 is partially maintained and recognizable at p ≈ 0.3
suggests a low information-emergence threshold. Indeed, the
probability for information percolating from input to any
output node at p ≈ 0.3 is <0.0081 for the shortest path, yet
inhibition at this level is robustly tolerated. The underlying
process for burst suppressions, discussed above, likely
contributes to the network’s ability to integrate information
at low p. This implies that information access can occur in
simple systems as long as some type of pacemaking activity
exists to coordinate the dynamic recalibration of connection
strength among the network components. In mammalian
brains, pacemakers are known to exist [48–50] and their
neurobiological description is consistent with this notion.
Our model has been built to provide a global view of

rules governing information percolations through scalable
brain connectivity, without considering many biological
details. For example, we do not differentiate network
inhibition through potentiation of inhibitory neurons or
inhibition of excitatory neurons. Similarly, regional hetero-
geneities due to different populations of receptor subtypes
are not considered. Although adding more realism will
likely provide more quantitative power to explain specific
experimental observations, these details will not invalidate
the general conclusions on the global scale, as evidenced by
the model’s qualitative robustness in reproducing clinical
EEG features with only a single parameter.
This model has important theoretical implications and

supports the notion that consciousness may arise from the
same basic statistical processes as those governing the
criticality for self-organization emergence, independent of
biological details [51]. Although the brain is many orders of
magnitude more complex, it is tempting to speculate that the
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FIG. 3 (color). Anteriorization of cortical activity. Fourier
analyses of output node activity for the indicated edge proba-
bilities are shown. Output nodes are arranged 1 to 256 in groups
of 16 from posterior to anterior. Higher power in the α and δ
bands shifts to the anterior (higher number) nodes with decreas-
ing p until p ¼ 0.3, when anteriorization effects dissipate.
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transition between conscious and unconscious states is also
regulated by a single connectivity parameter, especially
considering the clinical observation that a sharp transition
between conscious and unconscious states occurs within an
extremely narrow anesthetic concentration range, with little
variation among human subjects or even among different
species of vastly different brain scales and capacities.
Experimentalists may test this model by measuring

organized synchronous activity in brain networks, such as
between the primary visual cortex and frontal eye fields. A
critical anesthetic dose might be identified where synchro-
nous firing for visual attention is abruptly disrupted upon loss
of consciousness. It is also possible to design a double
transgenic system [52] with two reporters driven by activity-
dependent immediate early genes. A comparison of the
colocalization of the reporters should reveal a fixed subset of
neurons in conscious learning and relearning, but an increas-
ingly chaotic, nonoverlapping subset of neurons in uncon-
scious learning under varying anesthesia depths. Our model

also raises the possibility of statistically improbable brain
states, in which deeply inhibited neural centers become
sufficiently connected through stochastic processes to a
degree that they can support consciousness markers.
Clinically, this may suggest the possibility of information
incorporation in minimally conscious brains. Recent experi-
ments in rodents have demonstrated such possibilities [19].

This work was supported by grants from the National
Institutes of Health (Grants No. R37GM049202 and
No. R01GM066358) and the IEEE Computational
Intelligence Society. D.W. Z. and D. D. M. contributed
equally to this work.

*Corresponding author.
xuy@anes.upmc.edu

[1] R. D. S. Raizada, Towards a theory of the laminar archi-
tecture of cerebral cortex: computational clues from the
visual system, Cereb. Cortex 13, 100 (2003).

[2] J. A. Hirsch and L.M. Martinez, Laminar processing in the
visual cortical column, Curr. Opin. Neurobiol. 16, 377 (2006).

[3] N. T. Markov et al., A weighted and directed interareal
connectivity matrix for macaque cerebral cortex, Cereb.
Cortex 24, 17 (2014).

[4] S. L. Bressler and V. Menon, Large-scale brain networks in
cognition: emerging methods and principles, Trends Cognit.
Sci. 14, 277 (2010).

[5] V. Menon, Large-scale brain networks and psychopathol-
ogy: a unifying triple network model, Trends Cognit. Sci.
15, 483 (2011).

[6] H. J. Park and K. Friston, Structural and functional brain
networks: from connections to cognition, Science 342,
1238411 (2013).

[7] M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, and L. C.
Wilcocks, Toward a theory of the general-anesthetic-
induced phase transition of the cerebral cortex. I. A
thermodynamics analogy, Phys. Rev. E 64, 011917 (2001).

[8] D. A. Steyn-Ross, M. L. Steyn-Ross, L. C. Wilcocks, and J.
W. Sleigh, Toward a theory of the general-anesthetic-
induced phase transition of the cerebral cortex. II. Numeri-
cal simulations, spectral entropy, and correlation times,
Phys. Rev. E 64, 011918 (2001).

[9] M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, and D. T.
Liley, Theoretical electroencephalogram stationary spec-
trum for a white-noise-driven cortex: evidence for a general
anesthetic-induced phase transition, Phys. Rev. E 60, 7299
(1999).

[10] K. Wang, M. L. Steyn-Ross, D. A. Steyn-Ross, M. T.
Wilson, and J. W. Sleigh, EEG slow-wave coherence
changes in propofol-induced general anesthesia: experiment
and theory, Front. Syst. Neurosci. 8, 215 (2014).

[11] S. N. Ching, A. Cimenser, P. L. Purdon, E. N. Brown, and
N. J. Kopell, Thalamocortical model for a propofol-induced
α-rhythm associated with loss of consciousness, Proc. Natl.
Acad. Sci. U.S.A. 107, 22665 (2010).

[12] S. N. Ching, P. L. Purdon, S. Vijayan, N. J. Kopell, and E. N.
Brown, A neurophysiological—metabolic model for burst
suppression, Proc. Natl. Acad. Sci. U.S.A. 109, 3095 (2012).

50 100 150 200 250
0

1

2

3

4

5

6

Pixel Intensity

K
L(

P
||Q

) −
 K

L c

p=1

p=0.30

p=0.35p=0.35p=0.35
p=0.40p=0.40p=0.40
p=0.45

p=0
p=0.25

p=0.20

p=0.15

2

1.001.001.000.380.380.340.340.34

0.320.320.320.300.300.000.000.00

0

1

2

3

4

5

6

K
L(

P
||Q

) 
−

 K
L c

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
edge probability

(a)

(b)

(c)

FIG. 4 (color). Emergence of correlative signal cohesion.
(a) Output information entropy, measured by the KL divergence
[KLðP∥QÞ − KLc] as an order parameter, is plotted as a function
of p. Each value represents bits lost in the output from 8 bits of
maximum information. A phase transition is revealed at p ≈ 0.3.
(b) KL divergence plotted as a function of pixel intensity for
p ¼ 0 (purple), 0.15 (red), 0.20 (orange), 0.25 (yellow), 0.30
(black), 0.35 (green), 0.40 (cyan), 0.45 (blue), and 1 (dark blue).
Similar to (a), a clear dichotomy in information entropy occurs
around p ¼ 0.3. Information content is lost more rapidly from
high-intensity signals. (c) Graphic illustration of transitions
revealed in (a) and (b): Reconstructions of an 8-bit gray scale
image at p ¼ 0.00, 0.30, 0.32, 0.34, 0.38, and 1.00, respectively.
The original image features emerge sharply, becoming recogniz-
able between p ¼ 0.32 and p ¼ 0.34.

PRL 115, 108103 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

108103-5

http://dx.doi.org/10.1093/cercor/13.1.100
http://dx.doi.org/10.1016/j.conb.2006.06.014
http://dx.doi.org/10.1093/cercor/bhs270
http://dx.doi.org/10.1093/cercor/bhs270
http://dx.doi.org/10.1016/j.tics.2010.04.004
http://dx.doi.org/10.1016/j.tics.2010.04.004
http://dx.doi.org/10.1016/j.tics.2011.08.003
http://dx.doi.org/10.1016/j.tics.2011.08.003
http://dx.doi.org/10.1126/science.1238411
http://dx.doi.org/10.1126/science.1238411
http://dx.doi.org/10.1103/PhysRevE.64.011917
http://dx.doi.org/10.1103/PhysRevE.64.011918
http://dx.doi.org/10.1103/PhysRevE.60.7299
http://dx.doi.org/10.1103/PhysRevE.60.7299
http://dx.doi.org/10.3389/fnsys.2014.00215
http://dx.doi.org/10.1073/pnas.1017069108
http://dx.doi.org/10.1073/pnas.1017069108
http://dx.doi.org/10.1073/pnas.1121461109


[13] T. Iwai, H. Kihara, K. Imaiand, and M. Uchida, Dose-
response curve for anaesthetics based on the Monod-
Wyman-Changeux model, Br. J. Anaesth. 77, 517 (1996).

[14] J. H. Sheeba, A. Stefanovska, and P. V. E. McClintock,
Neuronal synchrony during anaesthesia - A thalamocortical
model, Biophys. J. 95, 2722 (2008).

[15] M.M. Boly et al., Connectivity changes underlying spectral
EEG changes during propofol-induced loss of conscious-
ness, J. Neurosci. 32, 7082 (2012).

[16] I. Bojak and D. T. Liley, Modeling the effects of anesthesia on
the electroencephalogram, Phys. Rev. E 71, 041902 (2005).

[17] G. Tononi, Consciousness as integrated information: a
provisional manifesto, Biol. Bull. 215, 216 (2008).

[18] A. G. Casali et al., A theoretically based index of conscious-
ness independent of sensory processing and behavior, Sci.
Transl. Med. 5, 198ra105 (2013).

[19] A. R. Samuelsson, N. R. Brandon, P. Tang, and Y. Xu,
Cellular registration without behavioral recall of olfactory
sensory input under general anesthesia, Anesthesiology 120,
890 (2014).

[20] B. Bollobas and O. Riordan, Percolation (Cambridge
University Press, Cambridge, England, 2006).

[21] S. M. Sherman, Thalamocortical interactions, Curr. Opin.
Neurobiol. 22, 575 (2012).

[22] N. Yamamoto, Cellular and molecular basis for the for-
mation of lamina-specific thalamocortical projections,
Neurosci. Res. 42, 167 (2002).

[23] M. Inan and M. C. Crair, Development of cortical maps: per-
spectives from the barrel cortex, Neuroscientist 13, 49 (2007).

[24] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.115.108103, which in-
cludes Refs. [25,26].

[25] T. Fedele, H. J. Scheer, G. Waterstraat, B. Telenczuk, M.
Burghoff, and G. Curio, Towards non-invasive multi-unit
spike recordings: mapping 1 kHz EEG signals over human
somatosensory cortex, Clin. Neurophysiol. 123, 2370 (2012).

[26] H. J. Scheer, T. Fedele, G. Curio, and M. Burghoff,
Extension of non-invasive EEG into the kHz range for
evoked thalamocortical activity by means of very low noise
amplifiers, Physiol. Meas. 32, N73 (2011).

[27] D. J. Watts and S. H. Strogatz, Collective dynamics of
‘small-world’ networks, Nature (London) 393, 440 (1998).

[28] F. Aboitiz and J. F. Montiel, From tetrapods to primates:
conserved developmental mechanisms in diverging ecologi-
cal adaptations, Prog. Brain Res. 195, 3 (2012).

[29] N. Kadmon Harpaz, T. Flash, and I. Dinstein, Scale-
invariant movement encoding in the human motor system,
Neuron 81, 452 (2014).

[30] G. Werner, Fractals in the nervous system: conceptual
implications for theoretical neuroscience, Front. Physiol.
1, 15 (2010).

[31] C. T. Kello, G. D. Brown, I. C. R. Ferrer, J. G. Holden, K.
Linkenkaer-Hansen, T. Rhodes, and G. C. Van Orden, Scaling
laws in cognitive sciences, Trends Cognit. Sci. 14, 223 (2010).

[32] C. J. Stam and E. C. van Straaten, The organization of
physiological brain networks, Clin. Neurophysiol. 123,
1067 (2012).

[33] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag,
Organization, development and function of complex brain
networks, Trends Cognit. Sci. 8, 418 (2004).

[34] N. T. Markov, M. Ercsey-Ravasz, D. C. Van Essen, K.
Knoblauch, Z. Toroczkai, and H. Kennedy, Kennedy,
Cortical high-density counterstream architectures, Science
342, 1238406 (2013).

[35] E. N. Brown, P. L. Purdon, and C. J. Van Dort, General
anesthesia and altered states of arousal: a systems neuro-
science analysis, Annu. Rev. Neurosci. 34, 601 (2011).

[36] K.M. Hartikainen, M. Rorarius, J. J. Peräkylä, P. J. Laippala,
and V. Jäntti, Cortical reactivity during isoflurane burst-
suppression anesthesia, Anesth. Analg. 81, 1223 (1995).

[37] V. A. Feshchenko, R. A. Veselis, and R. A. Reinsel, Propofol-
induced alpha rhythm, Neuropsychobiology 50, 257 (2004).

[38] G. G. Supp, M. Siegel, J. F. Hipp, and A. K. Engel, Cortical
hypersynchrony predicts breakdown of sensory processing
during loss of consciousness, Curr. Biol. 21, 1988 (2011).

[39] J. H. Tinker, F. W. Sharbrough, and J. D. Michenfelder,
Anterior shift of the dominant EEG rhytham during anes-
thesia in the Java monkey: Correlation with anesthetic
potency, Anesthesiology 46, 252 (1977).

[40] D. L. Clark and B. S. Rosner, Neurophysiologic effects of
general anesthetics. I. The electroencephalogram and sensory
evoked responses in man, Anesthesiology 38, 564 (1973).

[41] J. Borjigin, U. Lee, T. Liu, D. Pal, S. Huff, D. Klarr, J.
Sloboda, J. Hernandez, M.M. Wang, and G. A. Mashour,
Surge of neurophysiological coherence and connectivity in the
dying brain, Proc. Natl. Acad. Sci. U.S.A. 110, 14432 (2013).

[42] M. Steriade, D. Contreras, F. Amzica, and I. Timofeev,
Synchronization of fast (30–40 Hz) spontaneous oscillations
in intrathalamic and thalamocortical networks, J. Neurosci.
16, 2788 (1996).

[43] D. Contreras and M. Steriade, Synchronization of low-
frequency rhythms in corticothalamic networks, Neurosci-
ence (N.Y.) 76, 11 (1996).

[44] J. Vezoli, A. Falchier, B. Jouve, K. Knoblauch, M. Young,
and H. Kennedy, Quantitative analysis of connectivity in the
visual cortex: extracting function from structure, Neuro-
scientist 10, 476 (2004).

[45] D. J. Felleman and D. C. Van Essen, Distributed hierarchical
processing in the primate cerebral cortex, Cereb. Cortex 1, 1
(1991).

[46] U. Lee, S. Kim, G. J. Noh, B. M. Choi, E. Hwang, and G. A.
Mashour, The directionality and functional organization of
frontoparietal connectivity during consciousness and anes-
thesia in humans, Conscious. Cogn. 18, 1069 (2009).

[47] S. Kullback and R. A. Leibler, On Information and Suffi-
ciency, Ann. Math. Stat. 22, 79 (1951).

[48] P. Fuentealba and M. Steriade, The reticular nucleus
revisited: intrinsic and network properties of a thalamic
pacemaker, Prog. Neurobiol. 75, 125 (2005).

[49] J. R. Huguenard, Anatomical and physiological consider-
ations in thalamic rhythm generation, J. Sleep Res. 7, 24
(1998).

[50] D. Jaeger and H. Kita, Functional connectivity and inte-
grative properties of globus pallidus neurons, Neuroscience
(N.Y.) 198, 44 (2011).

[51] D. Krotov, J. O. Dubuis, T. Gregor, and W. Bialek, Morpho-
genesis at criticality, Proc. Natl. Acad. Sci. U.S.A. 111,
3683 (2014).

[52] N. Matsuo, Irreplaceability of neuronal ensembles after
memory allocation, Cell Rep. 11, 351 (2015).

PRL 115, 108103 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

108103-6

http://dx.doi.org/10.1093/bja/77.4.517
http://dx.doi.org/10.1529/biophysj.108.134635
http://dx.doi.org/10.1523/JNEUROSCI.3769-11.2012
http://dx.doi.org/10.1103/PhysRevE.71.041902
http://dx.doi.org/10.2307/25470707
http://dx.doi.org/10.1126/scitranslmed.3006294
http://dx.doi.org/10.1126/scitranslmed.3006294
http://dx.doi.org/10.1097/ALN.0000000000000137
http://dx.doi.org/10.1097/ALN.0000000000000137
http://dx.doi.org/10.1016/j.conb.2012.03.005
http://dx.doi.org/10.1016/j.conb.2012.03.005
http://dx.doi.org/10.1016/S0168-0102(01)00324-8
http://dx.doi.org/10.1177/1073858406296257
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.108103
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.108103
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.108103
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.108103
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.108103
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.108103
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.108103
http://dx.doi.org/10.1016/j.clinph.2012.04.028
http://dx.doi.org/10.1088/0967-3334/32/12/N02
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1016/B978-0-444-53860-4.00001-5
http://dx.doi.org/10.1016/j.neuron.2013.10.058
http://dx.doi.org/10.3389/fphys.2010.00015
http://dx.doi.org/10.3389/fphys.2010.00015
http://dx.doi.org/10.1016/j.tics.2010.02.005
http://dx.doi.org/10.1016/j.clinph.2012.01.011
http://dx.doi.org/10.1016/j.clinph.2012.01.011
http://dx.doi.org/10.1016/j.tics.2004.07.008
http://dx.doi.org/10.1126/science.1238406
http://dx.doi.org/10.1126/science.1238406
http://dx.doi.org/10.1146/annurev-neuro-060909-153200
http://dx.doi.org/10.1097/00132586-199702000-00048
http://dx.doi.org/10.1159/000079981
http://dx.doi.org/10.1016/j.cub.2011.10.017
http://dx.doi.org/10.1097/00000542-197704000-00005
http://dx.doi.org/10.1097/00000542-197306000-00011
http://dx.doi.org/10.1073/pnas.1308285110
http://dx.doi.org/10.1016/S0306-4522(96)00393-4
http://dx.doi.org/10.1016/S0306-4522(96)00393-4
http://dx.doi.org/10.1177/1073858404268478
http://dx.doi.org/10.1177/1073858404268478
http://dx.doi.org/10.1093/cercor/1.1.1
http://dx.doi.org/10.1093/cercor/1.1.1
http://dx.doi.org/10.1016/j.concog.2009.04.004
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1016/j.pneurobio.2005.01.002
http://dx.doi.org/10.1046/j.1365-2869.7.s1.5.x
http://dx.doi.org/10.1046/j.1365-2869.7.s1.5.x
http://dx.doi.org/10.1016/j.neuroscience.2011.07.050
http://dx.doi.org/10.1016/j.neuroscience.2011.07.050
http://dx.doi.org/10.1073/pnas.1324186111
http://dx.doi.org/10.1073/pnas.1324186111
http://dx.doi.org/10.1016/j.celrep.2015.03.042

