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Enzymes have been recently found to exhibit enhanced diffusion due to their catalytic activities. A recent
experiment [C. Riedel et al., Nature (London) 517, 227 (2015)] has found evidence that suggests this
phenomenon might be controlled by the degree of exothermicity of the catalytic reaction involved. Four
mechanisms that can lead to this effect, namely, self-thermophoresis, boost in kinetic energy, stochastic
swimming, and collective heating are critically discussed, and it is shown that only the last two can be
strong enough to account for the observations. The resulting quantitative description is used to examine the
biological significance of the effect.
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Introduction.—A most fascinating aspect of the non-
equilibrium processes in living cells is active transport [1].
The basic units of these processes, which could be in the
form of carrying cargo or sliding actin fibers against one
another, are motor proteins that convert chemical energy
directly into useful mechanical work amidst dominant
thermal fluctuations at the nanoscale [2]. Recent in vitro
studies of mixtures of motors and filaments have revealed
their remarkable ability to self-organize into dynamic
mesoscale structures that resemble those observed in living
cells [3–5]. Much less is known about the nature of the
nonequilibrium activity of noncytoskeletal elements and
how they self-organize in living cells.
It has been recently reported that enzymes undergo

enhanced diffusion, i.e., diffusive motion with an effective
diffusion coefficient Deff that is larger than its equilibrium
value D0 as a result of their catalytic activity [6,7].
Considering the enzyme as a sphere of radius R in a
medium with viscosity η and temperature T, the Stokes-
Einstein relation D0 ¼ kBT=ζ gives us the equilibrium
diffusion coefficient of the enzyme, where ζ ¼ 6πηR is its
friction coefficient. The additional nonequilibrium contri-
bution to the diffusion coefficientΔD ¼ Deff −D0 is found
to be proportional to the net rate (or speed) of the catalytic
reaction. The rate has the characteristic Michaelis-Menten
form k ¼ keS=ðKM þ SÞ, where S is the substrate (i.e.,
reactant) concentration, KM is the Michaelis constant, and
ke is the enzyme reaction rate. Remarkably, ΔD has the
same order of magnitude as the equilibrium diffusion
coefficient, typically a fraction of it. It has also been
observed that there is a strong correlation between the
degree of exothermicity of the catalytic reaction and the
enhancement in the effective diffusion coefficient of
enzymes [8]. In this Letter, I discuss and critically examine
various mechanisms that can lead to enhanced diffusion for
catalytically active enzymes.
Self-phoresis.—Any colloidal particle that actively gen-

erates nonequilibrium phoretic flow in its vicinity exhibits

enhanced effective diffusion at time scales longer than its
orientational persistence time 1=Dr, where Dr is the
rotational diffusion coefficient [9]. Enzyme activity has
the right ingredients to lead to enhanced diffusion via self-
diffusiophoresis, which takes advantage of gradients in the
concentrations of the chemicals involved in the reaction
[10]. However, this contribution is not sensitive to the
degree of exothermicity of the reaction. The appropriate
mechanism that could account for such an effect is self-
thermophoresis [11,12]. The heat released from the chemi-
cal reaction during each catalytic cycle Q leads to a
temperature difference ΔT ≃ kQ=ðκRÞ across the enzyme,
where κ is the thermal conductivity of the medium. For
catalase k ¼ 5 × 104 s−1, Q ¼ 40kBT, and R ¼ 4 nm,
which gives D0 ¼ 55 μm2 s−1 and Dr ¼ 2.6 × 106 s−1.
Using these values and κ ∼ 0.6 W=ðmKÞ for water, we
obtain ΔT ∼ 10−6 K. The self-propulsion velocity is esti-
mated as Vst ∼D0STΔT=R ∼D0STkQ=ðκR2Þ [11], where
ST is the Soret coefficient of the enzyme. Using ST ≃
0.02 K−1 [13], we find Vst ∼ 10−4 μms−1. The correction to
the effective diffusion coefficient due to self-thermophoresis
is ΔD≃ V2

st=Dr, for which we find ΔD≃ 10−14 μm2 s−1,
and, consequently, ΔD=D0 ≃ 10−16. This is 15 orders of
magnitude too small to account for the observations.
Boost in kinetic energy.—The authors of Ref. [8] propose

a scenario in which the heat released from the chemical
reaction during each catalytic cycle is channeled into a
boost in the translational velocity of the enzyme. This is not
envisaged to be mediated through an effective temperature
increase following the release of heat. Here I reproduce
their analysis using a slightly different derivation to high-
light the essence of the proposed mechanism. Consider the
enzyme to be a particle of mass m whose stochastic motion
satisfies Newton’s equation mðd2r=dtÞ þ ζðdr=dtÞ ¼ fðtÞ,
where fðtÞ is a random force. The relative significance of
the inertial and the dissipative terms in the equation of
motion is characterized by the time scale τ ¼ m=ζ. Using
m ¼ ð4π=3ÞR3ρp with a typical protein mass density
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ρp ¼ 1.4 × 103 kg=m3 and η ¼ 1 × 10−3 Pa s for viscosity
of water at room temperature, we find τ ¼ 5 ps. Invoking
an elegant mathematical trick that Langevin used in his
original 1908 paper [14], we can write the equation of
motion as

�
τ
d
dt

þ 1

�
DeffðtÞ ¼

2

3ζ
EðtÞ; ð1Þ

where DeffðtÞ ¼ 1
6
ðd=dtÞhrðtÞ2i is by definition the effec-

tive diffusion coefficient, and EðtÞ ¼ hðm=2Þðdr=dtÞ2i is
the average kinetic energy of the enzyme. Here we have
assumed a separation of time scales between the random
thermal kicks that the enzyme receives from the medium
and the catalytic cycle, and the averaging is performed over
the thermal kicks. We can write EðtÞ ¼ 3

2
kBT þ γQhðtÞ,

where γ represents the fraction of the released thermal
energy that is converted into the translational boost, and
hðtÞ is a series of spikes of width τb that appear stochas-
tically at a rate k through a Poisson process. Here, τb is the
relaxation time of the boost, which depends on the specific
process that generates it. It is reasonable to assume that
τb ≈ τ. The boost mechanism proposed in Ref. [8] involves
asymmetric excitation of compressional waves along the
enzyme that propagate to the interface with water and
trigger a pressure wave that leads to a backreaction on the
enzyme itself, giving it a mechanical boost. No evidence is
provided in Ref. [8] as to why the energy is not randomly
partitioned between a large number of possible channels
(owing to the large number of degrees of freedom or normal
modes), which would result in γ ≪ 1 and subsequently
dissipated, as opposed to being channeled to a small
number of modes (corresponding to γ ∼ 1). Time averaging
gives Ē ¼ 3

2
kBT þ γQkτb, and, consequently,

ΔD
D0

����
Ref. ½8�

¼ 2

3

γQ
kBT

kτb; ð2Þ

through Eq. (1). Using the above estimate for τb and the
values for k and Q corresponding to catalase, we obtain
kτb ¼ 2.5 × 10−7 and ΔD=D0 ¼ γ × 10−5 from Eq. (2).
Even with the (unrealistic) maximum value of γ ¼ 1, our
estimate from Eq. (2) is 4 orders of magnitude too small to
account for the observations.
Stochastic swimming.—We could examine various

hydrodynamic effects that might contribute towards such
a behavior. Substrate binding could change the shape of the
enzyme and, consequently, its friction coefficient. Since
this process does not require energy input, however, it
cannot be the cause of a nonequilibrium phenomenon. Such
conformational changes are often relatively small and will
more likely lead to an increase in size that would result in a
decrease in the diffusion coefficient, rather than the other
way around. Moreover, it is not clear why such an effect

could lead to universal trends—as it will depend on specific
cases—and how it can correlate with exothermicity.
As an alternative scenario, it is possible that the

catalytic cycle induces conformational changes in
the enzyme that lead to stochastic swimming [15]. The
amplitude of these deformations is typically much smaller
than the size of the enzyme, e.g., when they arise from
mechanochemical coupling of electrostatic nature [16]
(analogous to phosphorylation) or structural changes
due to ligand binding [17]. However, local heat release
could have the possibility to transiently disturb the
relatively more fragile tertiary structure of the folded
protein [18] or the state of oligomerization of the enzyme
[19] and produce an amplitude b that is a fraction of the
size R.
To calculate the contribution of such conformational

changes to the effective diffusion coefficient, we use a
simple model in which the conformational change is
described by 1 degree of freedom LðtÞ representing
elongation of the structure along an axis defined by a unit
vector n̂ðtÞ. To achieve directed swimming, we need at least
2 degrees of freedom to incorporate the coherence needed
for breaking the time-reversal symmetry at a stochastic
level, and we know that realistic conformational changes
must involve many degrees of freedom. The randomization
of the orientation described via hn̂ðtÞ · n̂ðt0Þi ¼ e−2Drjt−t0j
will turn the directed motion into enhanced diffusion over
the time scales longer than 1=Dr. Since the same can be
achieved through reciprocal conformational changes
described by 1 compact degree of freedom, I will adopt
this simpler form. The stochastic motion of the enzyme
can be described by the Langevin equation vðtÞ≃
α½ðd=dtÞL�n̂ðtÞ þ ξðtÞ, where α is a numerical prefactor
that depends on the geometry of the enzyme [20,21], and
ξðtÞ is the Gaussian white noise that will give us the
intrinsic translational diffusion coefficient D0.
We describe the combined mechanochemical cycle using

a two-step process, which takes the enzyme from its free
state to the reaction stage that is followed by the deforma-
tion with rate k and a relaxation back to its native state with
rate kr. This is a simplification of a more realistic model
with three states (free, substrate bound, and reacted
deformed), and k is to be understood as the combined
catalytic rate that has the Michaelis-Menten form as
defined above. In the stationary state, a master equation
formulation can be used to calculate the elongation speed
autocorrelation function as hðd=dtÞLðtÞðd=dt0ÞLðt0Þi ¼
2b2ðkkr=kþkrÞ½δðt− t0Þ− 1

2
ðkþkrÞe−ðkþkrÞjt−t0j�. By com-

bining this with the orientation autocorrelation, we can
calculate the effective diffusion coefficient of the enzyme,
which gives the following correction

ΔD ¼ 1

3
α2b2

�
kkr

kþ kr

�
2Dr

2Dr þ kþ kr
: ð3Þ
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Even for the fastest enzymes, we typically have
kr ≈Dr ≫ k. Using an upper bound of b≲ R, we can
approximate Eq. (3) as ΔD ≈ kR2. For catalase, we obtain
ΔD ≈ 1 μm2 s−1, which gives an upper bound of
ΔD=D0 ≈ 10−2. This is 1 order of magnitude smaller than
the observed values.
Collective heating.—In Ref. [8], a calculation similar to

what we have above to estimate the relative change in
temperature across the enzyme ΔT is used to argue that
heating of the environment by the enzyme is negligible.
This estimate, however, is only correct for an isolated
enzyme. In practice, an experiment is performed on a
solution with a finite concentration of enzyme,Ce. For such
a sample, the substrate is consumed at the rate (per unit
volume) of keSCa

e=ðKM þ SÞ, where Ca
e is the concen-

tration of the catalytically active enzymes. The exothermic
catalytic reaction generates thermal energy Q per turnover
cycle at the location of each active enzyme, which then
diffuses through the sample container and escapes via the
boundaries. Because of the large number of heat-producing
enzymes (of the order of Avogadro’s number), there will be
a significant buildup of thermal energy in the sample
container. To see this, let us define a length scale l that
describes the characteristic distance heat needs to diffuse
until it can exit. l is typically set by the smallest length
scale in the geometry of the sample container. We can
estimate a characteristic heat diffusion time τhðlÞ ¼ l2=χ
using the thermophoretic conductivity χ. For water at room
temperature, we have χ ≃ 105 μm2 s−1. For l ¼ 10 mm, it
takes τh ¼ 1000 s for the heat released from each enzyme
during each catalytic cycle to leave the container. Given
Ce ¼ 1 nM [8], during this time, 1020 units of Q will have
been released into the chamber (assumed to have a volume
∼l3); this is 10 J of thermal energy.
The heat diffusion equation is written as

χ−1∂tT −∇2T ¼ Q
κ

keSCa
e

KM þ S
−

1

l2
ðT − TaÞ: ð4Þ

The right-hand side of Eq. (4) contains a source term that
couples the catalytic reaction to the production of heat and a
sink term that approximates the heat loss through the
boundaries by a bulk term in the form of Newton’s law
of cooling [22], where Ta is the ambient temperature. This
term is written in terms of the length scale l that is
described above. This approximation has been widely used
in the combustion literature to allow the temperature-
dependent nonlinearities in the source term to be captured
in a manner that does not depend on the geometric
specificities of each experiment [23]. Figure 1 summarizes
the essence of this approximation.
Two quantities in the source term of Eq. (4) have

significant dependence on temperature, which we will
represent using θ ¼ ðT − TaÞ=Ta. The first quantity is
the turnover rate, which we can assume to have an

Arrhenius form of ke ¼ k�0e
−Ea=kBT , where Ea is the

activation energy. The rate can be rewritten as
ke ¼ k0eϵθ=ð1þθÞ, where ϵ ¼ Ea=kBTa and k0 ¼ k�0e

−ϵ.
The second quantity is the concentration of active enzymes.
Since enzymes are proteins, an increase in temperature will
eventually denature them upon approaching the denatura-
tion temperature, which we denote by θd. We can use a
simple two-state model to account for the denaturation,
which yields Ca

e ¼ Ce=½egðθ−θdÞ þ 1�, where the parameter
g controls the sharpness of the transition. The two effects
enter the heat source term in Eq. (4) via the product keCa

e ,
whose temperature dependence is shown in Fig. 2(a), for
g ¼ 50, θd ¼ 0.1 (that corresponds to Td ¼ 330 K for
Ta ¼ 300 K) and ϵ ¼ 7 which is a typical value for the
activation energy for enzymes, such as catalase [24]. The
plot shows the two standard regimes of initial increase in
the effective rate due to the Arrhenius temperature depend-
ence and the sudden decline due to denaturation. The peak
will sharpen with increasing activation energy ϵ. The inset
of Fig. 2(a) shows the fraction of active enzymes as a
function of temperature.
Writing the temperature dependencies in Eq. (4) explic-

itly, we find

τh∂tθ − l2∇2θ ¼ δ
eϵθ=ð1þθÞ

egðθ−θdÞ þ 1
− θ; ð5Þ

where

δ ¼ Ql2

κTa

k0SCe

KM þ S
ð6Þ

emerges as a single dimensionless parameter that controls
the strength of collective heating. Assuming a uniform
profile, we can find the stationary-state temperature of the
system as a function of δ by setting the right-hand side of
Eq. (5) to zero. The result is shown in Fig. 2(b). Note that

FIG. 1 (color online). Schematic illustration of the essence of
Newton’s law of cooling. The heat generated in the bulk of a
chamber (that is in contact with the environment that has a fixed
ambient temperature Ta) and lost in the form of heat flux through
the boundaries leads to the temperature profile Treal (solid line),
which is approximated by the average value over the distance ∼l,
Tapp (dashed line). This approximation works best when there is a
separation of length scales.
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the temperature dependence of the kinetic rate provides
such a sensitive positive feedback mechanism that could
lead to unrealistically high temperatures, easily above
enzyme denaturation and even above the boiling temper-
ature of water (for a case such as catalase with the large
value of Q ¼ 40kBT). The presence of denaturation pro-
vides a negative feedback mechanism that ensures such
dramatic temperature increases are cut off.
The temperature increase can be used to calculate the

relative increase in the diffusion coefficient ΔD=D0 by
taking into account the corresponding variations in the
friction coefficient. Denaturation will change the hydro-
dynamic radius of the protein from its globular (folded)
form, with size R ∼ aN1=3, to its coiled (unfolded) form,
with size Rg ∼ aN3=5, where a is the Kuhn length, and
N is the polymerization index. This yields Rg ∼ RN4=15.
For catalase, we have a≃ 1 nm, N ≃ 100, Rg ≃ 14 nm.
To calculate the diffusion coefficient within our simple
two-state model, we need to use the ensemble average of
the inverse size; namely, we use 1=R with the probability
p ¼ 1=½egðθ−θdÞ þ 1� and 1=Rg with the probability 1 − p.
We can use the following expression for the temperature
dependence of the viscosity of water ηðθÞ ¼
η0 exp fðB=TaÞ=½1þ θ − ðT0=TaÞ�g, where B ¼ 579 K,
T0 ¼ 138 K, and η0 ¼ 2.41 × 10−5 Pa s. The result is
plotted in Fig. 2(c) showing a similar pattern of behavior
as in θ. The values obtained for ΔD=D0 are of the same
order of magnitude as the experimentally observed values,
while the actual temperature increase in the solution is
relatively modest. Moreover, the trend in Fig. 2(c) resem-
bles the experimental results reported in Refs. [6–8].
To estimate typical experimental values for δ, we need a

typical length scale from the sample container and the
smallest conductivity involved in the geometry of the
system. For fluorescence correlation spectroscopy experi-
ments, a droplet of the solution is placed over a glass slide.
Using κ ∼ 0.02 W=ðmKÞ for air, l ¼ 5 mm, and Ce ¼
1 nM (as used in Ref. [8]), k0 ¼ 5 × 104 s−1, and
Q ¼ 40kBT, we find δ≃ 0.02 at substrate saturation.
This estimate appears to provide a rough order of magni-
tude agreement with the observations of Ref. [8]. Note that

due to our approximate treatment of the boundary con-
ditions, order unity differences are to be expected when
comparing to the experimental results. The experiments in
Refs. [6,7] use higher concentrations of enzymes and
similar sample sizes and, thus, comfortably fall in the
regime described by the collective heating scenario.
Discussion.—The collective heating model leads to very

specific predictions that could be experimentally tested.
The near-linear dependence of the relative enhancement in
diffusion coefficient on δ [Fig. 2(c)] and the definition of δ
[Eq. (6)] suggest a linear dependence on the enzyme
concentration and a quadratic dependence on the size of
the container. In practice, protein denaturation is irrevers-
ible, which suggests that recording experimental data over a
long time scale would presumably lead to a systematic
reduction in the magnitude of the enhanced diffusion,
provided the experiment is done under the condition that
the substrate concentration is maintained at a constant level.
The heating mechanism can also lead to interesting

nonlinear phenomena. While at small values of ϵ, we
observe a near-linear dependence of temperature on δ
[Fig. 2(b)]; upon increasing ϵ, the curve takes an S shape
that develops an instability at sufficiently large values of ϵ,
as shown in Fig. 2(d). The instability will lead to the
formation of waves, which will dissipate in a sealed sample
container when all the fuel molecules are consumed,
following closely the phenomenology of flames in com-
bustion [25]. Moreover, collective heating could have
synergistic influence on the other mechanisms: while the
increase in temperature could facilitate the emergence of
large conformational changes in the tertiary structure or the
oligomerization state during the enzymatic turnover, pho-
retic collective heating can lead to further instabilities [26]
that could accentuate the degree of fluctuations in the
system.
Finally, let us examine whether the total heat generated

in a cell could be sufficient to trigger this effect.
Considering a cell of size l ¼ 10 μm that is fully packed
with enzymes similar to catalase (that gives us
Ce ∼ 1 mM), we find δ ∼ 0.01. While this is an upper
limit, it certainly points to a strong possibility that the

FIG. 2 (color online). (a) The effective rate of catalytic reaction as a function of the reduced temperature θ for θd ¼ 0.1, g ¼ 50, and
ϵ ¼ 7. The inset shows the fraction of catalytically active enzymes as a function of θ in each case. (b) The effective temperature of the
catalytically active medium as a function of the coupling strength δ. (c) The corresponding relative increase in diffusion coefficient.
(d) The effective temperature for ϵ ¼ 30 with the dashed region being unstable.
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enhanced diffusion via collective heating could be a
contributing factor to nondirected intracellular transport
in living cells.
In conclusion, enhanced diffusion of enzymes that

catalyze exothermic reactions could be explained by a
combination of global temperature increase in the sample
container and possibly enhanced conformational changes
that can lead to a hydrodynamic enhancement of effective
diffusion coefficient. Self-thermophoresis and boost in
kinetic energy as suggested by Ref. [8] are too weak to
account for the experimentally measured values of effective
diffusion. Although the primary focus of this work has been
on enhanced diffusion of enzymes, the theoretical descrip-
tion should be relevant to the study of any class of thermally
activated microswimmers.
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