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Graphene subjected to chiral-symmetric disorder is believed to host zero energy modes (ZEMs) resilient
to localization, as suggested by the renormalization group analysis of the underlying nonlinear sigma
model. We report accurate quantum transport calculations in honeycomb lattices with in excess of 109 sites
and fine meV resolutions. The Kubo dc conductivity of ZEMs induced by vacancy defects (chiral BDI
class) is found to match 4e2=πh within 1% accuracy, over a parametrically wide window of energy level
broadenings and vacancy concentrations. Our results disclose an unprecedentedly robust metallic regime in
graphene, providing strong evidence that the early field-theoretical picture for the BDI class is valid well
beyond its controlled weak-coupling regime.
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After more than half a century, Anderson localization
remains a central concept in condensed matter physics,
with its many ramifications providing new insights into the
behavior of disordered electrons [1]. The discovery of the
“tenfold” symmetry classes of disordered metals [2,3]—
beyond the standard threefold Wigner-Dyson classification
scheme—has revealed a surprisingly rich diagram of
Anderson localization transitions, including multifractality
and critical delocalization in low dimensions [4].
The interest in critical quantum transport in two-

dimensional (2D) systems has been greatly amplified with
the discovery of graphene, a one-atom-thick crystal
endowed with massless Dirac fermions [5]. The internal
pseudospin of the Dirac fermions—stemming from the
honeycomb lattice structure with two sublattices—enables
a rich variety of quantum transport phenomena [6,7],
including minimum conductivity in the clean limit [8],
and crossover from weak-localization—orthogonal class—
to weak-antilocalization—symplectic class—with increas-
ing impurity potential range [9].
Recently, disordered graphene in the chiral symmetry

class has been the focus of much attention [10–13]. In
chiral models defined on bipartite lattices, disordered wave
functions come in electron-hole pairs with energies �E
linked by a unitary matrix diagonal in the sublattice space,
i.e., jϕ�i ¼ σ̂zjϕ∓i. A remarkable feature of the chiral class
is the existence of critical states at the band center—zero-
energy modes (ZEMs)—possessing multifractal statistics
and an absence of weak localization corrections at all orders
in perturbation theory [2]. In graphene, the simplest
realization of critical ZEMs is provided by randomly
distributed vacancies. A vacancy is a topological defect
obtained by cutting out all adjacent bonds to a given carbon
site. Vacancies drastically affect the spectrum near the

Dirac point, leading to the appearance of ZEMs with
enhanced density of states (DOS) and quasilocalized
character [14,15], which can be detected by scanning
tunneling microscopy [16]. Other examples of chiral-
symmetric disorder in graphene include random non-
Abelian gauge fields (ripples) [17], and resonant scatterers
(e.g., adsorbed hydrogen) [18]. Whether quantum critical-
ity induced by chiral disorder could explain the resilience
of the minimum conductivity of graphene to Anderson
localization is an outstanding question.
The focus of this Letter is on vacancy-induced ZEMs,

recently implicated in a controversy regarding the exact
nature of the quantum transport at the Dirac point [19–22].
Vacancy-defective graphene belongs to the chiral orthogo-
nal ensemble (class BDI in the Altland-Zirnbauer classi-
fication of random fermion models [3]). The vanishing of
the β function of the effective nonlinear sigma model
(NLσM) led Ostrovsky et al. to conjecture a line of
fixed points with nonuniversal metallic conductivity of
the order of the conductance quantum σð0Þ ≈ e2=h
[22–24]. However, the validity of the NLσM of the BDI
class has been questioned, as vacancies are infinitely strong
scatterers, not amenable to perturbative analysis [12]. On
the other hand, numerical evaluations of the conductivity
using wave-packet propagation methods show localization
of all states σðEÞ → 0, including the ZEMs [19–21]. The
Gade singularity in the DOS approaching E → 0 [12],
however, raises questions on the validity of the extraction of
the conductivity using wave-packet propagation methods.
In this Letter we report on accurate calculations of the

longitudinal dc conductivity in macroscopic large disor-
dered graphene. By employing an exact representation of
the Kubo formula in terms of Chebyshev polynomials, we
were able to extract the behavior of σðEÞ at the Dirac point
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with unprecedented resolution. Our results univocally show
that vacancy-induced ZEMs display critical delocalization,
as suggested by perturbative calculations based on the
NLσM [22–24] and numerical studies of the two-terminal
conductance in nanoribbons with resonant scalar impurities
[22,23]. We find a constant conductivity over a wide range
of vacancy concentrations,

σð0Þ ¼ σZEMð1.00� 0.01Þ; σZEM ≡ 4e2

πh
:

Strikingly, the ZEM conductivity is found to be robust
with respect to variations in the inelastic broadening
parameter η entering in the disordered Green functions
down to η ¼ 2.5 meV. This result is very surprising as
vacancies are the ultimate case of a strong short-range
disorder in graphene mixing K and K0 valleys [6,7].
The model.—Chiral disordered graphene is modeled by

the standard tight-binding Hamiltonian of π electrons
defined on a honeycomb lattice

Ĥ ¼ −t
X
hi;ji

ðâ†i b̂j þ b̂†j âiÞ; ð1Þ

where hi; ji denotes nearest-neighbor pairs of carbon atoms
and t ¼ 2.7 eV is the corresponding hopping integral [5].
Periodic boundary conditions along zigzag and armchair
directions are employed. The vacancies—obtained by
removing the corresponding pz orbitals—are distributed
randomly on both sublattices with overall concentration ni.
In what follows, we briefly outline the Chebyshev-
polynomial Green function (CPGF) method used to accu-
rately evaluate spectral properties and response functions of
real size systems.
The CPGF approach.—The numerical evaluation of

the lattice resolvent operator ĜðzÞ ¼ ðz − ĤÞ−1 requires a
nonzero broadening (resolution) parameter η ¼ Im z≳ δE,
where δE is the mean level spacing. We are interested in the
limit of small δE, where strong quantum interference
effects associated with ZEMs can be fully appreciated
[4]. Numerical evaluations of disordered lattice Green
functions in the presence of critical states are computa-
tionally highly demanding. In Ref. [12] a time-domain
stochastic method has been employed to extract the DOS
with high resolution. Here, we evaluate target functions
directly in the energy domain by expressing Green func-
tions in terms of an exact polynomial expansion. Our
approach turns out to be particularly advantageous in the
calculation of the conductivity (see below). First-kind
Chebyshev polynomials fTnðxÞgn∈N0

are employed due
to their superior convergence properties [25,26]. The use of
Chebyshev polynomials as a basis set requires rescaling the
spectrum of Ĥ into the interval ½−1∶1�. To this end, we
scale both operators and energy variables, Ĥ → ĥ ¼ Ĥ=W,
ϵ ¼ E=W, and λ ¼ η=W, where W is the half-bandwidth.
With this notation the Green function admits the following
representation:

ĜðEþ iηÞ ¼ 1

W

X∞
n¼0

gnðϵ; λÞT nðĥÞ; ð2Þ

where fT nðĥÞg are defined through the Chebyshev recur-
sion relations: T 0ðĥÞ ¼ Î, T 1ðĥÞ ¼ ĥ, and T nþ1ðĥÞ ¼ 2ĥ·
T nðĥÞ − T n−1ðĥÞ. The coefficients fgnðϵ; λÞgn∈N0

are sys-
tem independent and possess a simple closed form [27].
The CPGF expansion [Eq. (2)] is the starting point of the
accurate calculations reported in this work.
Density of states.—We start with a brief discussion of

the DOS. Formally,

νðEÞ ¼ −
gs
πD

Tr Im Ĝ ðEþ iηÞ; ð3Þ

where gs ¼ 2 accounts for spin degeneracy and the bar
means disorder averaging. According to Eqs. (2) and (3),
the information about the DOS is contained in the
Chebyshev moments νn ¼ Tr T nðĥÞ of individual disorder
realizations. To probe features induced by chiral ZEMs
with meV resolution, we consider a honeycomb lattice with
D ¼ 60000 × 60000 sites (≈ 94 μm2). This system has
δE ≈ 0.3 meV at the Dirac point in the absence of
vacancies. The DOS for a dilute vacancy concentration
ni ¼ 0.4% is shown in Fig. 1. Given the large size of the
system simulated, one disorder configuration is sufficient to
obtain very precise results. The expected enhancement of
the DOS associated with ZEMs near E ¼ 0 [14,15] is seen
to dramatically depend on the resolution. Extracting the
exact scaling as E → 0 is a demanding task as the number
of Chebyshev moments required to converge the DOS, i.e.,
N ∝ W=η, can be of the order of several tens of thousands
even for meV resolution; here, N ¼ 15 × 103. (Similar
technical challenges were encountered in Ref. [12].) The
analysis of the data suggests that the singularity is stronger
than that predicted by Gade and Wegner [2] in full
consistency with the detailed numerical study of
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FIG. 1 (color online). Density of states of disordered graphene
as a function of Fermi energy. The Gade singularity of ZEMs is
apparent as the energy levels are probed with increasing reso-
lution η → 0. The pristine DOS is shown (black line) as a guide to
the eye.
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Ref. [12] and the analytical results in Ref. [13]; see
Supplemental Material for full details [27].
Conductivity.—The finite-size Kubo formula reads

σðEÞ ¼ 2ℏe2

πΩ
Tr

�
Im Ĝ ðEþ iηÞ v̂∥ Im Ĝ ðEþ iηÞ v̂∥

�
;

ð4Þ

where v̂∥ ¼ ½r̂∥; Ĥ�=iℏ is the velocity operator (taken along
the zigzag direction) and Ω is the area. Here, the broad-
ening η mimics the effect of uncorrelated inelastic scatter-
ing processes, thus defining a time scale τi ¼ ℏ=η for phase
coherence in the system [32,33].
The calculation of σðEÞ follows identical steps as out-

lined for the DOS. The presence of two Green functions in
Eq. (4) requires a double polynomial expansion, rendering
the calculation computationally extremely demanding.
Analogously to the kernel polynomial method [18,25],
the full spectral information is now contained in the
Chebyshev moments σnm ¼ Tr ½T n ðĥÞ v̂∥ T m ðĥÞ v̂∥�. The
number of moments required (≡N2) depends on the desired
resolution. Typically, N ≈ 10 × ðW=ηÞ converges the con-
ductivity to two decimal places. From the knowledge of
fσnmg the dc conductivity σðEÞ is quickly reconstructed.
See Ref. [27] for details.
Full spectral results.—We first provide a bird’s-eye view

of σðEÞ before specializing to the case of ZEMs. For
modest resolutions, η≳ 10 meV, the physically meaning-
ful limit σΩ→∞ðEÞ is achievable in relatively small systems
with D ≈ 107. The fully converged dc conductivity for a
dilute vacancy concentration ni ¼ 0.4% is shown in Fig. 2.
The behavior of σΩ→∞ðEÞ with decreasing η (i.e., increas-
ing τi) provides direct information on the quantum

transport regime [e.g., limη→0 σΩ→∞ðEÞ ¼ 0ð> 0Þ in the
insulating (metallic) phase] [33]. The limit Ω → ∞ is
implicit hereafter. In an energy window≃� 0.2 eV around
E ¼ 0—excluding the Dirac point itself—σðEÞ decreases
as η is lowered, showing that localization effects become
increasingly more important as the thermodynamic limit
η → δE → 0 is approached. The effect is notably stronger
in the vicinity of the Dirac point, where strong localization
(σ ≲ e2=h) takes place already for η ≈ 10 meV. This
indicates that the a priori unknown simulated inelastic
lengths Li ¼ LiðE; τiÞ are sufficiently large that charge
carriers can effectively experience localization. In contrast,
at energies jEj ≳ 0.2 eV an increase of σðEÞ with increas-
ing τi is observed. This suggests that at such energies the
simulated Li is not yet sufficiently large to observe
localization effects. This interpretation is further confirmed
below. At the Dirac point, on the other hand, σðEÞ seems
insensitive to the inelastic broadening parameter, matching
σZEM with 1% precision in the entire range (see inset to
Fig. 2). The anomalous robustness of the dc conductivity as
E → 0 is highly suggestive of a quantum critical point, in
agreement with field-theoretical predictions [24].
High resolution results.—To probe the extension of

delocalization effects at the Dirac point, we devise a
scheme to enable the computation of σðEÞ with meV
resolution. First, we recursively construct the vectors

jφ�ðEÞi ¼
1

W

X∞
n¼0

Im ½gnðϵ; λÞ�Ôn
�jφi; ð5Þ

where jφi ¼ P
D
i¼1 χijii is a real random vector, Ôn

þ ¼
T nðĥÞv̂∥, and Ôn

- ¼ v̂∥T nðĥÞ. The random variables fχig
are uncorrelated and taken from a uniform distribution with
⟪χi⟫ ¼ 0. The series is truncated at n < N when con-
vergence to the desired precision is achieved. Finally, the
Kubo dc conductivity is obtained from

σφðEÞ ¼
2ℏe2

πΩ
hφ−ðEÞjφþðEÞi; ð6Þ

by averaging with respect to both disorder and random
vector realizations, i.e., σðEÞ ¼ ⟪σφðEÞ⟫ [27]. We note
that for ZEMs, Eq. (5) acquires a particular simple form,
jφ�ð0Þi ¼ W−1P

nIm½g2nð0; λÞ�Ô2n
� jφi. The advantage of

Eqs. (5) and (6) is that they do not require calculation
of individual Chebyshev moments fσnmg (cost ∝ N2). In
practice, this allows us to reach fine resolution (higher N)
and also much larger systems containing up to a few billion
lattice sites [34].
The high-resolution conductivity data across the various

transport regimes identified earlier are given in Fig. 3. For
convenience, we define an effective system size L� ≡
ℏπvF=η as the length of a pristine graphene system having
δϵ ¼ η at the Dirac point. The largest simulation has
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FIG. 2 (color online). Fully converged Kubo dc conductivity
for a 0.4% vacancy concentration as a function of Fermi energy at
selected values of η. The calculation required N2 ¼ 6.4 × 107

Chebyshev moments. The inset shows a zoom of the peak at the
Dirac point. Statistical fluctuations of the data are within ≃1%.
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L� ≃ 0.7 μm, corresponding to a broadening of only
2.5 meV. The state vectors in Eq. (5) were calculated with
N ¼ 12000 Chebyshev iterations. The ZEM conductivity
shows no sign of localization, being numerically very close
to σZEM ¼ 4e2=ðπhÞ through a parametrically wide range
of inelastic broadenings in the range [2.5,60] meV. This is
to be contrasted with the behavior of σðEÞ away from the
band center. For instance, at energies E ¼ f50; 100g meV
there is a strong suppression towards σ → 0 as L� increases.
The localization is stronger in the neighborhood of the
critical point at zero energy, with states with E ¼ 50 meV
localizing first than those having E ¼ 100 meV. This
behavior can also be inferred from Fig. 2, which shows
that the tendency as η → 0 (L� → ∞) is for states to
localize first in the vicinity of the ZEMs. In the inset to
Fig. 3 the behavior for an energy far away from the Dirac
point is shown. A transition from ballistic to localized
regime is observed as L� increases. Eventually, as L� → ∞,
all states with E ≠ 0 become localized. The latter is
consistent with the behavior expected for random fermions
in the BDI class [1,4]. Crucially, however, our accurate
numerical treatment shows that the chiral symmetry at
E ¼ 0 protects ZEMs from localization up to L� ≈ 1 μm.
This exotic 2D metallic regime had been predicted by the
renormalization group (RG) analysis of the NLσM for the
BDI class [24], although a fully nonperturbative calculation
of the microscopic conductivity able to capture strong
quantum interference effects at the Dirac point was lacking
until now.
Universal ZEM conductivity.—We finally investigate the

robustness of the ZEMs metallic conductivity against
changes in vacancy concentration. According to the per-
turbative RG analysis for white-noise disorder in the BDI
class, σð0Þ should depend weakly on the disorder strength

[24]. The actual picture for vacancies—being infinitely
strong scatterers—is difficult to predict based solely on
field-theoretical methods [12,35]. The little sensitivity of
σð0Þ to the effective length L� intuitively suggests a small
dependence with the defect concentration too. Interestingly,
numerical results for transport across narrow graphene
strips show σð0Þ ≈ σZEM with weak dependence on ni
[23], demonstrating that, although evanescent modes are
strongly affected by scattering from vacancy defects, the
large number of modes available (large DOS) counteracts
perfectly to restore graphene’s clean ballistic conductivity
[8]. To investigate the possibility of a disorder-induced
universal metallic regime in graphene, we perform accurate
Kubo calculations over 2 orders of magnitude in ni. We
take a fine broadening η ¼ 2.5 meV so as to guarantee that
L� is sufficiently large to capture any marked localization
trend near the Dirac point. Our results are summarized in
Fig. 4. Away from the band center the conductivity is
strongly decaying with ni as expected. For instance, at
E ¼ 0.1 eV—a typical Fermi energy in experiments—the
conductivity swiftly enters in the strong localized regime
already for dilute concentrations ni ≈ 0.2%. The depend-
ence of σðEÞ with L� is well fitted by an exponential law
σ ∝ e−L�=ξ� ; see top panel. (The dependence of ξ� with the
defect concentration is shown in the inset to the bottom
panel.) However, at the band center ZEMs show no signs of
localization even beyond the very dilute limit up to
concentrations n ¼ 1%. For completeness we provide
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FIG. 3 (color online). Fully converged Kubo dc conductivity
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the results for E ¼ 0.4 eV where transport is ballistic in the
simulated range of L� up to n ≈ 0.8% (see also Fig. 3).
We briefly comment on previous wave-packet propaga-

tion calculations reporting on σð0Þ → 0 [19–21]. The
strong singularity of the DOS at E ¼ 0 makes the numeri-
cal extraction of the conductivity from the Einstein relation
for diffusive transport σðEÞ ∝ νðEÞDðEÞ very challenging.
Additionally, the level broadening inserted as the inverse of
the time cutoff in the wave packet propagation may not be
equivalent to the broadening employed in the finite-size
Kubo formula [Eq. (4)]. Although computationally much
more demanding, our approach has the advantage of
assessing directly the microscopic conductivity with no
further assumptions.
In summary, we have demonstrated critical delocalization

of zero energy modes in graphene by means of accurate
numerical evaluations of the Kubo conductivity in real size
disordered systems containing billions of carbon atoms.
Rather remarkably, the absence of localization in the BDI
class at the Dirac point is consistent with nonlinear sigma
model predictions [24] and numerical studies of the Dirac
equation [22,23], suggesting an unprecedentedly robust
metallic state in two dimensions. We hope that our work
encourages further use of accurate large-scale polynomial
methods in the study of Anderson localization transitions.
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