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Here we provide a picture of transport in quantum well heterostructures with a periodic driving field in
terms of a probabilistic occupation of the topologically protected edge states in the system. This is done by
generalizing methods from the field of photon-assisted tunneling. We show that the time dependent field
dresses the underlying Hamiltonian of the heterostructure and splits the system into sidebands. Each of
these sidebands is occupied with a certain probability which depends on the drive frequency and strength.
This leads to a reduction in the topological transport signatures of the system because of the probability to
absorb or emit a photon. Therefore when the voltage is tuned to the bulk gap the conductance is smaller
than the expected 2e2=h. We refer to this as photon-inhibited topological transport. Nevertheless, the edge
modes reveal their topological origin in the robustness of the edge conductance to disorder and changes in
model parameters. In this work the analogy with photon-assisted tunneling allows us to interpret the
calculated conductivity and explain the sum rule observed by Kundu and Seradjeh.
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Introduction.—Topological states of matter are currently
at the forefront of research in condensed matter physics.
From the quantum Hall effect to topological superconduc-
tors, these states are of interest for a variety of reasons. In
topological insulators the in-gap edge states are of primary
interest. These states are topologically protected, meaning
they are insensitive to deformations of the Hamiltonian’s
parameters that leave the topological gap intact and the
effects of disorder. The existence of such states provides a
physical signature of the topology in the charge and spin
conductance.
Recently, there has been a growing amount of attention

paid to the generation and/or manipulation of topological
states of matter through the application of a time-periodic
perturbation [1–20]. Experimental progress in this direction
has been made in both photonic crystals [21] and in a solid-
state context in Bi2Se3 [22]. In the Letter we study how a
time-periodic perturbation can be used to manipulate the
transport properties of a quantum spin Hall insulator. For
example, such a system is expected to have a two terminal
conductivity of 2e2=h in equilibrium. With the application
of a time-periodic field, we find that this value may be
reduced significantly. Despite this reduction and a deviation
from quantized units of e2=h, we find that this conductivity
is still topological in the sense that it is robust to disorder,
system size changes, and gap-conserving deformations of
the Hamiltonian. Furthermore, we describe a method to
predict the degree of these deviations quantitatively, and
their dependence on the drive strength and frequency.
To understand how this reduction in the conductivity can

be tuned and why it appears to be topologically robust, we
have developed an understanding by generalizing the
viewpoint of photon-assisted tunneling [23,24]. We find

that the periodic perturbation has a two-pronged effect.
First, it “dresses” the original static Hamiltonian and
second, it causes the edge conductance channels to only
be occupied probabilistically upon the injection of a lead
electron. This is because electrons tunneling into the
system can absorb or emit a photon. In this sense, the
presence of the photons inhibits the topological transport
properties of the system. This description not only accounts
for the reduction of the conductivity, but also explains why
its values are topological in nature. This interpretation will
be important for transport experiments in Floquet topo-
logical insulators. It provides an explanation of why the
conductivity isn’t quantized, as well as shows that the
conductivity can potentially be tuned predictably in the lab.
Methods.—As a model system we take the quantum well

heterostructures who play host to the quantum spin Hall
effect. We apply a time dependent field and allow for on-
site disorder. Our Hamiltonian is as follows:

HS ¼ HQW þHdisorder þHextðtÞ ð1Þ

where

HQW ¼
X

k

ψ†
k

�
ĤðkÞ 0

0 Ĥ�ð−kÞ
�
ψk

where ψ†
k is a four component creation operator for

electrons at momenta k in state mJ ¼ ð1=2; 3=2;−1=
2;−3=2Þ of the clean heterostructure and ĤðkÞ ¼
ϵkσ0 þ dðkÞ · σ, with σ being a vector of Pauli matrices.
In the typical language of these structures [25,26], we take
dðkÞ ¼ ½A sin kx; A sin ky;M − 4Bþ 2Bðcos kx þ cos kyÞ�
and ϵk ¼ C − 2Dð2 − cos kx − cos kyÞ. In order to focus on
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transport without additional complications we follow
Lindner and co-workers [2] and set C ¼ D ¼ 0,
A ¼ B ¼ 0.2jMj. All energies are in units of M. As we
are interested in a “topological” system we take M ¼ 1 so
that sgnðM=BÞ ¼ 1 [2,25].
Next, HextðtÞ ¼ 2ðV · σÞ cosΩt is an electro-

magnetic field polarized in the direction V [2,12,27,28].
For concreteness, we will take V ¼ Vextẑ; although this
is not necessary for what follows. Note HextðtÞ obeys the
periodic generalization of time-reversal invariance [2]
T HextðtÞT −1 ¼ Hextð−tþ τÞ for some τ. Finally,
Hdisorder ¼ −

P
i;αwiψ

†
i;αψ i;α (with ψ†

i the Fourier transform

of ψ†
k). This corresponds to charge impurities (disorder)

changing the chemical potential on each site by wi. We draw
the fwig randomly from an evenly distributed sample
between −W=2 and W=2. We call W the disorder strength.
Our numerical study employs the Floquet-Landauer

formalism [1,7,29,30]. Similar to Ref. [7], we consider
two different device geometries (see Fig. 1). First, we
consider a two-terminal device with the left and right end of
the system attached to leads whose Fermi level lies at the
“lead energy” E with a slight offset bias between the two
leads [31]. In this setup the quantity of interest is σðEÞ, the
differential conductivity given that the chemical potential
of the leads is at energy E. For a spin Hall insulator (e.g.,
our model above) in equilibrium when the lead energy E in
a two-terminal device is tuned to lie in the gap (i.e., on the
edge states), a value σðEÞ ¼ 2e2=h is expected [11,34].
This is the first signature in which we are interested. For
convenience, we define σTT ¼ σðV ≃ 0Þh=e2. Second, we
consider a six-terminal device. This device allows us to
probe whether the current is carried by bulk or edge modes
[7,35,36]. In equilibrium, it is found that the only nonzero
values of the transmission elements between leads λ and λ0,
Tλ;λ0 ðϵÞ (with ϵ in the gap), come from tunneling between
adjacent leads in the device. Thus Tλ;λ0 ðϵFÞ ¼ 0, unless λ ¼
λ0 � 1 (where 6þ 1 → 1). Moreover, it is argued that
Tλ;λ�1ðϵFÞ ¼ 1 as, because of the helical edge states, a
quasiparticle originating at lead λ must tunnel to one of the
neighbouring leads. Later in this Letter we look for similar
properties in the nonequilibrium system.

Before proceeding we comment on recent criticisms of
Floquet states in periodically driven systems [37–40].
Floquet states are often thought of as the steady states
of a time-periodic system [41]. References [37,39,40] argue
that the long time evolution of an isolated, periodically
driven system leads to an effectively infinite temperature
state for some driving periods. Our formalism for calculat-
ing transport properties attaches leads to the system (i.e., it
is not isolated anymore) and only makes assumptions about
the state of the leads in the distant past, namely, that the
leads are in a thermal equilibrium, and no assumptions on
the state of the system [31]. This assumption provides the
state of the system at the present time and does not rely on
“evolving” any particular Floquet state.
Transport results.—We begin with a clean system

(W ¼ 0) in a two terminal geometry. We fix
Ω ¼ 2.3jMj, and tune Vext. We plot σTT for Vext ¼
0jMj…jMj in Fig. 2. As Vext is increased from zero, the
quantization of σTT is lost. For moderately strong Vext, we
see that it reaches σTT ∼ 1.5. This shows that for a quantum
spin Hall insulator, the (bare) conductivity is not, in
general, quantized to the traditional equilibrium value
under the application of a periodic perturbation.
Looking again at Fig. 2, we see that these values are

robust to the strength of the disorder potential. The
deviation from the clean limit is insignificant, even up to
disorder strengths of M=2. Additionally, these values are
insensitive to the coupling strength of the system to the
leads [31], Γ, and the system size. This robustness leaves
the impression that despite the deviation of the conductivity
from σTT ¼ 2, the values it takes appear to be topologically
protected. Our six-terminal calculations provide additional
evidence of topological, edge conductance. With the lead
energy set in the gap of the system, we find that Tλ;λ0 ¼ 0,
except the off-diagonal elements Tλ;λþ1 and Tλþ1;λ. In
contrast to equilibrium, we find that Tλ;λþ1 ¼ Tλþ1;λ < 1.
In spite of this, we observe that the conduction takes place
only between adjacent leads suggesting that the current is
only flowing on the edges.
To explain the above behavior, we borrow insight from

the field of photon assisted tunneling (PAT). PAT, as first

FIG. 1. The two device geometries considered in this work. Left
is a two-terminal device labeled with leads left (“L”), and right
(“R”). On the right is a six terminal device labeled with leads 1
through 6. The sites coupled to leads have a solid rectangle
around them.
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FIG. 2 (color online). Plots of the differential two-terminal
conductivity as a function of Vext. Left: Results for various
disorder strengths. Right: Various values of the system size (L)
and the lead coupling parameter (Γ).
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proposed by Tien and Gordon [23], was originally used to
describe a superconducting-insulator-superconductor tun-
nel junction. When a periodic ac voltage Vac is applied to
one of the leads, the energy eigenstates of these leads split
into sidebands at energy Eþ nℏΩ for integer n and driving
frequency Ω ¼ 2π=T. The probability that each one of
these sidebands is occupied is given by J2nðαÞ, where
α ¼ eVac=ℏΩ, and Jn is the nth Bessel function of the
first kind. The consequence of this sideband splitting is that
when a lead energy E, is applied across the tunnel junction,
the electrons can tunnel into the system not just at energy E,
but at Eþ nℏΩ with a probability of J2nðαÞ. One interprets
this as the electrons absorbing (n > 0) or emitting (n < 0)
jnj photons. As a result the conductivity in the driven
system is given by σPATðEÞ ¼

P
nJ

2
nðαÞσ0ðEþ nℏΩÞ

[23,24]. Here σ0ðEÞ is the conductivity of the junction
in the absence of the ac voltage.
Here we do not have a simple periodic modulation of the

sample system, rather the modulation itself has some
internal structure given by V · σ. The result of this is that
the system is not simply split into sidebands. The fact that
HextðtÞ does not commute with the static Hamiltonian,
leads to interesting effects. In the case of off-resonant light
(light where ℏΩ does not connect parts of the clean, static
spectrum), we can make some simplifying assumptions to
obtain an effective description in line with PAT. We
describe this simpler case here and leave the discussion
of on-resonant light, where more care must be taken, for
later [42].
In the field of Floquet topological insulators [1,13–

15,30] with off-resonant light, it is known that one can
think of the periodic perturbation as “dressing” the static
system by modifying its underlying physical parameters to
produce a new, effective static Hamiltonian. However, this
approach is incomplete from a transport point of view. One
must take into account the splitting of the states of this
effective Hamiltonian into sidebands. Thus off-resonant
light has a two-sided effect: First, it dresses the static
Hamiltonian to produce a new effective static Hamiltonian.
Second, the eigenstates of this effective Hamiltonian are
split into sidebands in a process analogous to PAT. This
picture is not specific to the illustrative system we have
chosen here, it is more general. It may be used, for example,
to describe transport calculations in analogous systems like
illuminated graphene.
To motivate this consider writing jψðtÞi ¼ UVðtÞjψ̂ðtÞi

where iℏðd=dtÞUVðtÞ ¼ HextðtÞUVðtÞ. This transforms our
problem into a new problem with the Hamiltonian
ĤðtÞ ¼ U†

VðtÞHUVðtÞ, where H is the Hamiltonian in
the absence of the time-dependent field. If ½HextðtÞ; H� ¼
0 then ĤðtÞ ¼ H leading to an analogue of traditional PAT.
Here ½HextðtÞ; H� ≠ 0 in general and the transformation
UVðtÞ leads to a new, time-dependent Hamiltonian.
However, provided the mixing between bands is weak
(off-resonant), it is possible to approximate ĤðtÞ by its

time-averaged value. In the language of Floquet theory this
amounts to the leading order term [30] in ĤðtÞ of the

Floquet Hamiltonian HF ¼ ði=TÞTðe−i
R

T

0
dtĤðtÞÞ, Tð� � �Þ

denoting time ordering.
One can study the transport properties of this new

effective Hamiltonian. This, however, will miss the unitary
transformation that we have performed to get this
Hamiltonian. Accounting for this transformation in a full
transport calculation, in the approximation described
above, we arrive at the following expression for the two-
terminal conductivity of this system [31]:

σðEÞ ¼
X

m

J2m

�
2Vext

ℏΩ

�
σFðEþmℏΩÞ; ð2Þ

where σFðEÞ is the static differential conductivity of the
dressed system described byHF. For our current model, we
have a finite band width and have not taken into account
higher (or lower) energy bands. We assume the bands near
the Fermi level are separated in energy from the other bands
by a sufficient amount so that they can be neglected.
Experimental validation of this comes from Ref. [22] where
the experimental results can be understood by using only
the bands near the Fermi level. As a result we have σFðEþ
mℏΩÞ ¼ σFðVÞδm;0 for E≃ 0; no states exist at mℏΩ.
Therefore, we have

σðEÞ ¼ J20

�
2Vext

ℏΩ

�
σFðEÞðE≃ 0Þ: ð3Þ

Thus with an off-resonant driving frequency, we describe
the underlying system with an effective static Hamiltonian
which may give rise to the signature transport properties. In
the present case, we are interested in a Hamiltonian
showcasing the quantum spin Hall effect. This state should
have a two-terminal conductance of 2e2=h, and six-termi-
nal transmission elements as described above. In the
presence of a driving field, the in-gap edge states are only
occupied with a certain probability due to the prospect of
absorption or emission of photons. Thus, the transport
property we are interested in only shows up with a certain
probability. In the present case we expect σFðVÞ ¼ 2e2=h,
and so the actual conductivity we measure will be
σðEÞ ¼ 2J20ð2Vext=ℏΩÞ. Plotting this against our numerical
data produces excellent agreement (see Fig. 2). One may
look at this expression as a correction to the quantized value
of 2e2=h. One can show for in-gap energies E that
σðEÞ≃ 2½1 − ðVext=ℏΩÞ2�; i.e., this correction is second
order in Vext=ℏΩ.
This explains our observation in the opening of this

section. Despite the fact that we do not obtain the values
σ ¼ 2e2=h, or Tλ;λ�1 ¼ 1, the values that we do see are
robust in the same way as the equilibrium values. The
underlying system is topological in nature, with helical
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edge states that give rise to 2e2=h conductance and
Tλ;λ�1 ¼ 1. However, there is only a certain probability
that the electrons tunneling from the leads are at the correct
energy to take advantage of these channels. Thus, the
presence of these photons in the system inhibits the ability
of these edge channels to transport charge.
Our discussion so far has not relied on the fact that the

original Hamiltonian is topological in nature, rather it is
enough that the effective Hamiltonian be topological. In
other systems, it is possible to drive topological states in
otherwise trivial systems with off-resonant light. The most
prevalent example of this is graphene, where the light
produces an effective Hamiltonian with a topological mass.
Thus the suppression described above may also apply to
these other systems [3–7,11,30]. In the present system of
interest a trivial equilibrium system (i.e., M ¼ −1 in our
current language) can be driven into a topological phase.
This, however, relies on the light being on resonance [2]. A
description of this scenario in line with the discussion
above is possible, but subtle and we leave it to a future
communication [42].
Connection to Floquet sum rule.—We now connect our

work to a sum rule proposed recently by Kundu and
Seradjeh in the context of a system with Floquet
Majorana modes [1]. Similar to the current work, these
authors find that in the presence of a periodic perturbation,
a system with Majorana modes will not showcase the
expected zero-bias quantized conductance of 2e2=h.
Instead, the quantized conductivity is found in the sum

σ̄ðEÞ ¼
X

n

σðEþ nℏΩÞ: ð4Þ

Physically, the above corresponds to performing measure-
ments of σðEÞ not just at an in-gap energy E, but for lead
energies placed any number of ℏΩ’s above or below this.
The results of these measurements are than summed up. Let
us apply this sum rule to our system. Using Eq. (2) we have

σ̄ðEÞ ¼
X

n;m

J2m

�
2Vext

ℏΩ

�
σF½Eþ ðmþ nÞℏΩ�: ð5Þ

Shifting n → n −m, using the off resonance light conduc-
tivity σFðEþmℏΩÞ ¼ σFðEÞδm;0 and the Bessel functions
property

P
nJ

2
nðxÞ ¼ 1, leads to σ̄ðEÞ ¼ σFðEÞ. Therefore,

if σFðEÞ is quantized to 2e2=h, then σ̄ðEÞ should be as well.
The above result is intuitive from a PAT point of view. At

a two-terminal lead energy E≃ nℏΩ the electrons must
emit n photons to enter the quantized conductance channel
and thus enter it with probability P−n, the probability to
emit n photons. This gives a conductance of σFð0ÞP−n.
Summing over all the lead energies is then effectively
summing over all of the probabilities as σ̄ð0Þ ¼
σFð0Þ

P
nPn ¼ σFð0Þ; i.e., the sum rule recovers the under-

lying conductance.

The above derivation can be generalized to on-resonant
driving under certain conditions [42]. In particular, one
expects the sum rule to hold when edge states are visible in
the so-called “quasienergy” spectrum. Nonetheless, the
derivation presented here contains all of the intuition
required to understand the sum rule.
In Fig. 3 we show σ̄ðEÞ at E ¼ 0 for various different

disorder strengths as well as σFðEÞ. First, our data for the
clean system are in excellent agreement with σFðEÞ.
Second, the system shows noticeable deviations from
σ̄ðE≃ 0Þ ¼ 2e2=h in two regimes of Vext and occur in
both the clean and disordered systems. Here the bulk gap in
the effective Hamiltonian closes, and the topological edge
states are washed out by bulk conduction states. This is
most obvious when looking at the disorder averaged data
where the regions with σ̄ðEÞ ¼ 2e2=h are insensitive to
disorder, while the peaks are sensitive to disorder, as bulk
conduction states should be. This result is interesting from a
PAT perspective. Not only has the periodic field split the
system into sidebands, but it has modified the underlying
system in a nontrivial way. In a traditional PAT context only
the sideband splitting would take place.
Conclusions.—We have developed an analogue of PAT

to describe the transport signatures of topologically pro-
tected edge states in the quantum well heterostructures. Our
picture entails electrons only accessing the topological edge
states of the system probabilistically. The probability of the
electrons to absorb or emit a photon reduces the traditional
values associated with transport measurements in these
systems. These reduced values are, however, still insensi-
tive to disorder and other deformations. We refer to this
phenomenon as “photon-inhibited topological transport”.
By using this picture, we related our system to a Floquet

sum rule proposed before [1]. Our picture of PAT is able to
offer a physical description of why one would expect such a
rule to hold. Namely, the sum rule is adding up all of the
probabilities of accessing the edge state which, by itself,
should have the traditional transport signatures. This sum
then reveals the underlying transport properties.
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