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A gap in understanding the link between continuum theories of ion transport in ionic liquids and the
underlying microscopic dynamics has hindered the development of frameworks for transport phenomena in
these concentrated electrolytes. Here, we construct a continuum theory for ion transport in ionic liquids by
coarse graining a simple exclusion process of interacting particles on a lattice. The resulting dynamical
equations can be written as a gradient flow with a mobility matrix that vanishes at high densities. This form
of the mobility matrix gives rise to a charging behavior that is different to the one known for electrolytic
solutions, but which agrees qualitatively with the phenomenology observed in experiments and simulations.
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Room temperature ionic liquids play an increasingly
important role as electrolytes in electrochemical and electro-
mechanical applications ranging from actuators [1-3] to
supercapacitors [4-8]. Ionic liquids differ from traditional
electrolytes in that they consist only of positive and negative
ions without any solvent. Recent theoretical calculations [9]
suggest that ionic liquids are concentrated electrolytes, and
should not be modeled as a weak electrolyte (with solvent
consisting of ion pairs), as suggested elsewhere [10].

In many important technological applications, ionic
liquids are close to an electrified interface [11]. Although
the equilibrium structure of the electrical double layer is
relatively well studied, understanding the dynamic response
of ionic liquids to an applied potential or surface charge is
more challenging because of the difficulty in identifying an
appropriate nonequilibrium dynamic framework. Previous
theoretical studies [12—17] relied on the dynamical density
functional theory [18,19], in which the ion flux j. is related
to the ion density fields ¢, and free energy density func-
tional Flc.] via

F

Jr= _M:i:C:tv(;C—i)v (1)
where M, is the cation or anion mobility. A key assumption
in the derivation of Eq. (1) is that ion density is low compared
to an underlying solvent bath [20]. This assumption may
become problematic, as can be illustrated by substituting
the one-component lattice gas free energy, F., = (kgT/
a) [gla*c x In(a’c) + (1 = a*c)In(1 — a’c)|d®x, where ¢
is the particle density and Q is the system’s volume, into
Eq. (1); applying the continuity equation, we obtain
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where D = MkgT is the diffusion constant, kg the
Boltzmann constant, and 7 temperature. However, the
continuum limit of a system of particles on a lattice with
lattice constant a undergoing a simple exclusion process is
well known, and leads to the linear diffusion equation
Oc/0t = DV?c [21], rather than Eq. (2).

Lattice gas models of ions, first proposed by Bikerman
[22] in the 1940s, are commonly used as simple models of
ionic liquids [12,13,23-25] in equilibrium. The goal of this
Letter is to derive a consistent model for the dynamics of
ions in solvent-free ionic liquids, and analyze the dynamics
of electrical double layer formation. We map the system
onto a lattice and take the continuum limit of the micro-
scopic reference kinetics of a discrete symmetric exclusion
process (see Fig. 1). This reference kinetics is a natural one
to consider as ion motion in a concentrated assembly is
physically akin to particles “hopping” on a lattice [26].
Similar reference kinetics were successfully used to model

FIG. 1 (color online). Schematic of the system under consid-
eration: cations and anions on a lattice of lattice constant a.
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spinodal decomposition in alloys [29-33], and were shown
to be a microscopic basis for the Cahn-Hilliard equation
[34-36]. Our approach has the advantage that steric
exclusion is accounted for at the level of dynamics.

We first consider a one-dimensional lattice of lattice
constant a (corresponding to ion diameter a in the
continuum limit) for simplicity, and later generalize our
results to higher dimensions. We consider a discrete-time
dynamics in which particles can only move between
nearest-neighbor lattice sites between time ¢ and ¢ + At.
Denoting by $%(#) € {0, 1} the occupancy of the ith lattice
site at time ¢ by an ion of type @ = {+, —}, the evolution
master equation for S¢ reads
St(t+Ar) = ri  SESip + i ST (1=8))
+rl—>l 1SS!1+r 1—»111(1_S)

+(1- rio1)STs (3)

1—>t+l

where the S¢ on the right-hand side are taken at time ¢ and
S; =8} + 875 r%,,,, is unity if particle « at site i attempts
to jump to site i = 1 and is zero otherwise: this transition
propensity takes into account the long-ranged interparticle
interactions as explained below. The first term of Eq. (3)
ensures that there will be particle « at site i and time 7 + At,
if it is there at time ¢, attempts to move to site i + 1 and
finds that site occupied. The second term describes a
possible transition from site i + 1 to site i when there is
no particle at site i. The third and forth terms describe the
same processes between sites i and i — 1. Finally, the last
term corresponds to a particle a at site i that does not
attempt to leave it during the interval Atz.

An ensemble average of r{; with |[i—j| =1 gives a
transition rate that satisfies the detailed balance and can
thus be related to the Boltzmann factor by

1 a_ya
<r‘.’ > :Ee—(V/—Vi)/ZkBT’ (4)

1—]

where
VE=3">"Uylli=JDS) (5)
JFP

is a potential acting on particle o at site i due to all
remaining particles, and U,(|i — j|) is the microscopic
(electrostatic) interaction potential between the particles. In
the absence of long-ranged interactions (U, = 0), there is
no preferred direction of motion, thus (r?,,,,) = 1/2.
The continuum evolution equation can be obtained by
rescaling the lattice indices by the lattice spacing a, and
introducing the minimal lattice volume v (v = a in 1D) as
well as the ensemble average concentrations Colx =ai) =
v71(87) and mean potentials ub(x) =35 o Ugs(|x—
x'|)cg(x')dx’. Taking the average of both sides of
Eq. (3), and applying the mean field approximation,

(S,”’Sf> ~ (S%) <Sf), we can expand the resulting
expression in a power series in a and At to obtain
1 Oc, &c e, 1 0%,
Dar = vcaﬁ—i- (1 —wc) o + ¢ (1= vc)kB—T 52
Jc dc,] 1 opl
— (1= Gf 6
Ve o (1-wc) 0x | kgT Ox (6)

where we have defined ¢ =c, +c_ as the total ion
density, and identified D = a®/(2At) as the self-diffusion
coefficient.

To generalize Eq. (6) to higher dimensions, we assume
that the fluxes along different axes are decoupled.
Introducing the mobility matrix

D [(c.(l-wc 0
kT 0 c_(1=wc)
the higher-dimensional version of (6) is
dc
=V.(MV, 8
=V (M), Q
where ¢ = (c;,c_), p" = (u,,u_), and p, is defined by

ur = 6F /bc, where

Flei] = / (xy) aﬂ(|xl - X2|)Cﬁ(X2)dX1dX2
a[)’

- [za:vca In(ve,)
+(1=ve)In(1 — vc)] dx. (9)

Equation (8) is the continuum kinetic equation for an
interacting two component system. Note the important
physical constraint that the evolution equation for the total
concentration, c¢, in the absence of long-ranged interactions
(Ugp = 0), reduces to the linear diffusion equation. This
constraint, as explained above, respects the fact that the
underlying dynamics of our reference system is a simple
exclusion process on a lattice. Continuum kinetic equations
with the same mobility function as Eq. (8) have been
proposed in the literature in the context of the modified
Cahn-Hilliard equation [37], and phase-field models of
Li-ion batteries [38,39].

To apply Eq. (8) to an ionic liquid system, we introduce a
characteristic length scale /. for short-ranged interactions,
and split the Coulomb potential U,s = Upy + Uaﬁ’ where

Us(x) = quqplpe™/"/x, Ully(x) = QaQﬂlB(l —e ) /x
[40,41], and Iz = €?/(4meyekgT) is the Bjerrum length.
Below the length scale /., it is actually the hard core
exclusion that matters rather than the Coulomb interaction;
thus, U;;, can be neglected. This truncation of the
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FIG. 2 (color online). (a) The total density, C, + C_, and
(b) charge density C, — C_, as functions of distance X = x/L
from the electrode and time after an applied step voltage V =
40V, with V; = kgT/e. Here, y =0.25, [./lp, =10, and
L/l = 100, red and blue curves denote the first and second
charging regimes, and the arrow shows the increasing density
deficit in the first charging regime. Numerical solution of
Egs. (11)—(12) is performed using PDEPE in Matlab.

Coulomb potential is necessary as our mean-field approach
underestimates steric correlations, and as such the diver-
gence of the Coulomb interaction at the origin renders
electrostatic interactions effectively too strong. We thus
write

Uap(x)  Ulp(x) 1 — e/l
~ = lp———. 10
kBT kBT an[)’ B x ( )

This decomposition of the Coulomb potential is not
unique—the exponential function is chosen phenomeno-
logically and for mathematical convenience.

Introducing the local electric field u, and exploiting the
Green function, one can rewrite the nonlocal integro-
differential equation (8) as a set of coupled partial differ-
ential equations

(1-8V*)V2u = —4znlp(c, —c_), (11)
% _ DY es(1 = 00)V |u 4 1n (2 (12)
5 Cy ve u —wvc) |

Equation (11) is identical to the modified Poisson equation
derived phenomenologically in Ref. [25] using a gradient
expansion of a nonlocal electrostatic kernel. We note that
Ref. [42] took the variational approach of Ref. [25] to
develop a framework for charge-transfer reaction kinetics,
with the resulting equation similar to Eq. (12). Here we
provided a microscopic statistical derivation of the kinetics
of ion transport.

We turn our attention to a simple problem to gain some
insight into the characteristic behavior of Egs. (11)—(12): an
ionic liquid with bulk cation and anion concentration c,
bounded by two parallel, blocking electrodes at x = —L, L.
Initially the concentrations of the two ion species are
uniform, and a step voltage of amplitude 2V is applied
at = 0. Introducing the Debye length [, = 1/+/8zcyly
and dimensionless packing parameter in the bulk [12,23]
y = vcg, we introduce the dimensionless variables 7 =
(D/LIp)t, X = x/L, C+ = c+/cy. The no-flux conditions
at the electrodes read

aC. aC

. % o
ax % ax], .,

(13)

At the electrodes surface, we posit that the classical Gauss
law +eu, = 4o holds at X = +1, with ¢ the (dimen-
sional) surface charge density, and € the dielectric constant
of the medium [25,43]. This condition, together with the
constant potential condition gives

ou
+C.(1- }’C)a—X+ (1-yC)

M(X:j:l,f) :j:V, Mxxx(X::tl,T) :0,T>O.

(14)
The initial conditions are
C.(X,0)=1,Xe[-1,1]. (15)

To avoid complications of double layer overlap, we
consider widely separated electrodes taking L/l = 100.
We take [. =a = v'/3, Bjerrum length Iz = 50 A, ion
diameter a = 5 A, and y = 0.25 (see, e.g., Ref. [25] though
the qualitative behavior reported below is not sensitive to

7); we therefore have [./lp = \/8xylg/a =~ 10.
Figure 2 shows that charging proceeds through two

distinct regimes: First, the (negative) electrode attracts
cations from the vicinity and expels anions, resulting in
a dense, “compact layer” of cations near the electrode that
overcompensates the surface charge (region I in Fig. 2(b)).
Ion diffusion is hindered as the mobility matrix (7) vanishes
in regions of high density. As a result, the total density
reaches a minimum away from the compact layer [cf. red
arrow in Fig. 2(a)]. In the second stage, anions arrive from
the bulk to screen the now net-positive compact layer. This
flux fills the total density deficit near the compact layer
incurred in the first charging regime, creating a region of
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FIG. 3 (color online). The total charge as a function of time for
different values of /. /I, with L/l = 100, y = 0.25 fixed. (Inset)
The equilibrium relaxation time 7,,, as a function of /. and /j
(obtained by fitting numerical results to an exponential decay).

negative charge density and, in fact, excess total density
[region II in Fig. 2(b)].

A key measure of practical interest is the integrated total
diffuse charge,

0
0 = [Mle. (X -c.xaax.  (16)
Note that the overall system is electroneutral; therefore, the
total charge of the ions is equal and opposite to the surface
charge. Q is therefore the charge accumulated at the anode,
which is equal and opposite in sign to the charge accu-
mulated at the cathode. Figure 3 shows that, as charging
proceeds, the total charge initially increases, corresponding
to the formation of the compact layer. However, arrival of
anions in the second charging regime decreases the charge
to the final equilibrium value. This charging mechanism
is schematically illustrated in the inset of Fig. 3. The
correlation length [./Il, controls the extent of charge
oscillation and thus of overcompensation of electrode
surface charge by the compact layer. Therefore, decreasing
the correlation length reduces the extent of charge over-
compensation and also the peak diffuse charge.

Further insights into the charging process can be obtained
by noting that the initial rise in charge occurs over 7 = O(1).
In dimensional terms this corresponds to fx- = Ll /D, the
usual RC time constant [44], corroborating the fact that the
peak has its origin in the formation of the diffuse layer.
Numerical experimentation (see inset of Fig. 3) suggests that
the late-stage exponential relaxation of the charge to
equilibrium has a distinctly different time scale

L2 /1,\3/2
Trelax = B <ID> . (]7)

This scaling suggests that the decay in the stored charge
comes from the formation of charge oscillations: L?/D gives

o
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FIG. 4 (color online). The voltage drop across the system
evolves nonmonotonically under constant current conditions,
Eq. (18). Here L/l = 100, [/l = 10, and y = 0.25, and the
total charge Q = Jz. Inset: simulation data from Ref. [45] for
which ~400 kA cm™ corresponds to dimensionless J = 2.

the decay time due to diffusion of ions through the
electrochemical cell, and this is rescaled by (I,/1.)%?,
where [, is the characteristic wavelength of charge oscil-
lations [cf. Eq. (11)].

The nonmontonic evolution of Q(#) is in stark contrast
to the results predicted by dynamical density functional
theory [13,16,17], where the diffuse charge is monotoni-
cally increasing. We note that this effect is different from
kinetic charge inversion due to double layer overlap [15].
The degenerate mobility (7) in our approach ensures that
the flux due to electrostatic interactions vanishes at close
packing, and thus there are distinct regimes of initial charge
density polarization and, at later times, rearrangement of
the double layer into cation-rich and anion-rich layers.

Qualitatively similar behavior is obtained under charge-
controlled conditions, i.e., imposing a constant current,

— = +J7. (18)

Figure 4 shows that the nonequilibrium double layer
rearrangement manifests itself in the nonmonotonic evo-
lution of the potential drop across the system when the
current density J is large. This qualitatively agrees with
recent molecular dynamics simulations [45], but is in
contrast to conventional dynamical density functional
theory, which again predicts a monotonic increase in
potential drop as a function of time.

In summary, we have derived a continuous model for the
dynamics of solvent-free ionic liquids based on coarse-
graining a simple exclusion process of interacting particles
defined on a lattice. The resulting equations have the
structure of a gradient flow with a degenerate mobility
function. As examples, these equations were analyzed for a
system where (i) a step voltage is applied between widely
separated electrodes, and (ii) a constant charging current
is applied. Even in these simple cases, our theory differs
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qualitatively from previously developed theories for electro-
lyte solutions. Importantly, we showed that the total diffuse
charge is a nonmonotonic function of time. Experiments and
simulations of the dynamics of ion transport in ionic liquids
are currently scarce; we hope that our theory provides a
framework to interpret experiments and motivate further
investigation.
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discussions about kinetic lattice gas systems. This work
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publication are directly available within the publication.
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