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The distribution function of suprathermal ions is found to be self-similar under conditions relevant to
inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic
instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities
substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the
experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between
the exploding pusher experiments and rad-hydro simulations and contribute to the observation that
temperature inferred from DD reaction products is lower than from DT at the National Ignition Facility.
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Recent exploding pusher experiments [1–6] reveal sub-
stantial kinetic effects on the implosion performance.
Specific mechanisms potentially responsible for these
observations include the inter-ion-species diffusion [7–10]
and reactivity reduction due to ion tail depletion [11–18].
Theoretical evaluation of these phenomena is challenging,
however, and while fully kinetic simulations allow study of a
certain stage of implosion in specific configurations [19,20],
such calculations are computationally prohibitive for the
modeling of a realistic inertial confinement fusion (ICF)
experiment. A substantial simplification results from treating
thermal and suprathermal ions separately [21]. For the former,
the mean free path λð0Þ is often much smaller than the
characteristic scale of the system L, making fluid equations
(including interspecies diffusion) a valid model. The latter
constitute only a small fraction of the ion density,momentum,
and energy and do not appear explicitly in the fluid equations.
However, it is the suprathermal ions that are most likely to
undergo fusion reactions, so they do affect the fluid equations
implicitly as an energy source. For these ions, the mean free
path is much larger than λð0Þ and can be comparable toL even
if λð0Þ ≪ L. Hence, self-consistent modeling of ICF implo-
sions would appear to require a kinetic treatment of supra-
thermal ions capable of predicting the fusion reactivity at each
time step of the fluid equations’ evolution.
While suprathermal ions can be described by a reduced

linear (as opposite a to fully nonlinear) kinetic equation
[22], this task is still nontrivial. All prior studies rely on
either a direct numerical solution [15–18] or phenomeno-
logical assumptions that affect the structure of the kinetic
equation [13,14]. Until now, no simple solution to the first-
principles kinetic equation for the suprathermal ions has
been found even in the one-dimensional (1D) planar case.
The issue becomes particularly pressing in light of

hydroinstabilities at the fuel-pusher interface [23–30]. It
is near this interface that the suprathermal ion distribution is
modified most, so one should expect substantial interfer-
ence between the instabilities and the fusion reactivity.
However, applying direct numeric methods to a compli-
cated geometry is quite difficult and quantitative assess-
ment of this interference has not been presented.
In this Letter we demonstrate a physically intuitive,

semianalytical solution to the first-principles kinetic equa-
tion for suprathermal ions. This results from the self-similar
structure of the ion distribution, scaling with the distance to
the interface relative to the square of the ion energy. In the
1D planar geometry, the solution agrees precisely with
direct numerical results. Furthermore, comparison with the
numeric solution for the 1D spherical geometry shows that
the self-similar structure is robust against perturbations of
the interface from the planar geometry. This allows us
for the first time to evaluate the impact of hydrodynamic
instability on the reactivity reduction, which is found to be
substantially enhanced. We also obtain a novel kinetic
prediction for ICF experiments: that ion tail depletion
results in the experimentally inferred temperature being
lower than the actual one.
We consider a spherically symmetric hot spot with the

radius Rh surrounded by a cold pusher. From symmetry, the
distribution function fα of ion species α depends only on
three variables: the radial coordinate r, the particle speed v,
and the pitch angle θ between the velocity and radius
vectors. Defining μ≡ cos θ, we obtain the time-stationary
Vlasov operator

~v ·∇fα ¼ v

�
μ
∂fα
∂r þ ð1 − μ2Þ

r
∂fα
∂μ

�
: ð1Þ

The collision operator for species α is
Cαffαg ¼ P

βCαβffαg, where Cαβ denotes collisions of
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ion species α with ion species β. We neglect ion-electron
collisions and note that the suprathermal ions mostly
collide with thermal ions, which are close to Maxwellian
everywhere outside a narrow vicinity of the boundary.
Therefore, for suprathermal ions of species α [22,31]

Cαβffαg ≈ ναβ
v3Tα
2v3

∂
∂μ ð1 − μ2Þ ∂fα∂μ

þ ναβ
mα

mβ

v3Tα
v2

∂
∂v

�
fα þ

Tβ

mα

1

v
∂fα
∂v

�
; ð2Þ

where mα, Tα, and vTα ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tα=mα

p
denote the particle

mass, bulk temperature, and thermal velocity of species α,
respectively, and the collision frequency is defined by

ναβ ¼
4πnβZ2

αZ2
βe

4 lnΛ

m2
αv3Tα

; ð3Þ

where Zα and nα are the charge number and the bulk ion
density of species α, respectively, and lnΛ is the Coulomb
logarithm.
The rate of energy exchange between thermal ions of

species α and β is on the order of ναβ ∼ ναα ∼ νββ, making
their bulk temperatures equal, i.e., Tα ≡ T0 for all α.
Assuming a flat temperature profile in the hot spot and
equating the right-hand sides of Eqs. (1) and (2) yield the
stationary kinetic equation for the tail of fα

μ
∂fα
∂x þ 1 − μ2

x
∂fα
∂μ

¼ 1

NðαÞ
K

�
1

2ε2
∂
∂μ ð1 − μ2Þ ∂fα∂μ þ 2Gα

ε

∂
∂ε

�
fα þ

∂fα
∂ε

��
;

ð4Þ
where x≡ r=Rh, ε≡mαv2=2T0, N

ðαÞ
K ≡ vTα=ðRh

P
βναβÞ,

and Gα ≡ ðPβðmα=mβÞnβZ2
βÞ=ð

P
βnβZ

2
βÞ with summa-

tions over all ion species including α. The parameter Gα
depends only on the relative concentrations of the bulk ion
densities; for example, in a 50∶50 DT mixture, GD ¼ 5=6

andGT ¼ 5=4. The Knudsen numberNðαÞ
K is the ratio of the

effective mean free path of a thermal ion λð0Þα ≡
vTα=ð

P
βναβÞ and Rh and thus is the key parameter

quantifying the importance of the kinetic effects.
The kinetic equation (4) needs to be accompanied by a

condition at the interface between the hot and cold plasmas.
A natural constraint results from assuming that there is no
suprathermal ion inflow from the pusher into the hot spot

fαðx ¼ 1;−1 ≤ μ ≤ 0; εÞ ¼ 0: ð5Þ

In addition, the distribution function must be isotropic at
the center due to symmetry

∂fαðx ¼ 0; μ; εÞ=∂μ ¼ 0: ð6Þ

Finally, inside the hot spot fα should become Maxwellian
as ε approaches 1 from above since the thermal ions are
assumed to be close to equilibrium.
Physically, one expects the solution to be effectively

planar when the mean free path of a suprathermal ion with
energy ε, λðεÞα ≡ ε2λð0Þα , is much less than Rh, or

NðαÞ
K ε2 ≪ 1: ð7Þ

From direct numerical solution of the partial differential
equation problem formulated by Eq. (4) along with cons-
traints (5) and (6) one can find that in this limit the distribu-

tion is self-similar, fαðx; μ; εÞ ¼ fMϕðð1 − xÞ=ðNðαÞ
K ε2Þ; μÞ,

where fM ¼ nαðmα=2πT0Þ3=2e−ε is Maxwellian. This find-
ing has a transparent physical interpretation: for a given ε
deviation from equilibrium is controlled by the distance to the

boundary y ¼ Rh − r normalized to λðεÞα . We then construct a
solution that has this feature manifestly while keeping the
pitch-angle scattering structure of the collision operator

fα ¼ fM

�
1þ

X
n

cnψnðμÞe−σnz
�
; ð8Þ

where z≡ y=λðεÞα ¼ y=ðλð0Þα ε2Þ, cn are free constants, and the
eigenvalues and eigenvectors σn and ψnðμÞ satisfy

σnψn ¼
1

2μ

d
dμ

ð1 − μ2Þ dψn

dμ
−
3Gα

μ
ψn: ð9Þ

The validity of this choice will be verified by comparing the
resulting semianalytical solution against the direct numerical
one.We now proceed to identifying the cn that are compatible
with conditions (5) and (6).
The spectrum of the operator of Eq. (9) is symmetric

about zero (i.e., the eigenvalues come in pairs σn and −σn),
a consequence of the right-left symmetry of the planar case.
If the hot plasma occupies the half space −∞ < y < 0, the
constraint (6) dictates that only eigenfunctions with σn < 0
are included in the expansion (8). Imposing constraint (5) is
a more nontrivial task, since it applies to μ < 0 only.
To implement this condition, we evaluate the matrix

of the operator (9) over the Legendre polynomials
PkðμÞ. Solving the resulting eigenvalue problem gives
ψnðμÞ ¼

P
kankPkðμÞ. Upon defining bk ¼ 1þP

ncnank
for k ¼ 0 and bk ¼

P
ncnank otherwise, condition (5)

establishes a matrix relation between the vectors of odd
and even coefficients bk

b2kþ1 ¼
X
m

Dmkb2m; ð10Þ

where Dmk ¼ ð4kþ 3Þχ2k;2mþ1 with [32]

χi;j ¼
ð−1Þðiþjþ1Þ=2i!j!

2ðiþj−1Þði − jÞðiþ jþ 1Þ½ði=2Þ!�2f½ðj − 1Þ=2�!g2 :
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Importantly, if N Legendre polynomials are kept in the
expansion, this relation is equivalent to N=2 scalar equa-
tions, which is exactly equal to the number of unknowns
in Eq. (8) after eliminating modes with positive eigen-
values [33]. Once the eigenvectors ank are calculated,
Eq. (10) gives cn and therefore the distribution function
through Eq. (8).
To verify that this solution is precise in the planar case

and investigate its robustness against deviations of the
interface from the planar geometry, we compare it with the
distribution function obtained by direct numerical solution
of Eq. (4). Figure 1 shows a comparison of the deuteron
distribution function relative to Maxwellian in the 50∶50
DT mixture with NðDÞ

K ¼ 0.01 where solid curves corre-
spond to the numerical solution and dashed lines corre-
spond to the planar solution (8) with ð1 − xÞ=ðNKε

2Þ
substituted for z. For energies such that NKε

2 ≪ 1, the
solutions agree very well, which is consistent with the
formal planar limit condition (7). Furthermore, the agree-
ment is good even forNKε

2 ∼ 0.5 (red curve). Comparisons

for various NðαÞ
K and mixture compositions show similar

agreement.
When λðεÞα ≡ ε2λð0Þα > Rh, the planar solution overesti-

mates the suprathermal ion population, reflecting a short-
coming of the planar model in the context of spherical
geometry when ions “feel” not only the distance to the
boundary, but also the distance to the center of the hot spot.
To investigate the significance of this spherical effect we
consider the reactivity hσvi.
The fusion cross section σ is defined in absolute energy

units, while the fα deviation from Maxwellian (as well as
the deviation between planar and spherical solutions) is
governed by the energy ε normalized to the main ion

temperature. Thus, for a fixed NðαÞ
K and higher T0 the

reactivity is due to lower ε, thereby diminishing these

deviations. Conversely, for fixed T0, a larger NðαÞ
K corre-

sponds to a larger mean free path for any given ε, making
the effect stronger. This qualitative picture is supported by
the results in Fig. 2, which presents the volume averaged

reactivity hσvi≡ V−1 R
V d

3rhσvi for the DT fusion reac-
tion in the 50∶50 DT mixture. For T0 > 5 keV, the
predictions of the planar model and the direct numerical

calculation are within 15% even for NðDÞ
K ¼ 0.1 and within

5% for NðDÞ
K < 0.03. In the 1–5 keV range the discrepancy

is larger, but still within 12% for NðDÞ
K ¼ 0.01 and 0.03, for

which deviation from the 1D case will be considered.
Hence, with respect to reactivity, the distance to the
boundary is the only relevant scale and the resulting planar
solution is robust to perturbations of the boundary from the
planar geometry.
The above allows us for the first time to perform a

quantitative assessment of kinetic effects on the reactivity
in the presence of hydrodynamic instability. The entire
implosion analysis would include modeling this instability
along with the kinetic effects. For the purpose of demon-
stration, here we consider a sample case of the interface
perturbed as R ¼ Rh þ ΔR cos ðmϑÞ, where R and ϑ are the
radial and polar angle coordinates of the hot-spot boundary
and symmetry in the azimuthal angle φ is assumed.
Experiments and simulations indicate that ΔR=R can be
as large as 1=3 [25,26,28,30] and to imitate the spatial
structure of the unstable region we take m ¼ 20. Then, we
evaluate the overall reactivity reduction as follows: for a
point A inside the hot spot the point B on the perturbed
surface is found such that the distance AB is the shortest;
the distribution function is evaluated from our solution with
AB inserted for y; local reactivity reduction at each point A
is calculated and averaged over the perturbed volume V.
This procedure is computationally inexpensive and can be
applied readily to an arbitrarily perturbed surface. Figure 3
presents results of this calculation for the DT reaction in a
50∶50 DT mixture for ΔR=Rh equal to 1=5 (dashed line)
and 1=3 (dotted line) and Knudsen numbers of 0.01 and
0.03. Introduction of a perturbation even at the conservative
level of ΔR=Rh ¼ 1=5 can double the reactivity reduction
in the 1–10 keV range. Importantly, the change in reactivity
from the surface perturbation is substantially larger than the
discrepancy between predictions of the numerical and
semianalytical solutions in Fig. 2 for any given T0.

FIG. 1 (color online). Spatial dependence of the pitch-angle
averaged distribution function relative to Maxwellian for several
values of energy, as obtained from the direct numerical solution
of Eq. (4) (solid) and the semianalytical solution (dashed).

FIG. 2 (color online). Volume averaged DT reactivity relative to
Maxwellian computed from the direct numerical solution of
Eq. (4) (solid) and from the semianalytical solution (dashed).
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Finally, we demonstrate a novel effect of the ion tail
depletion on the experimentally inferred ion temperature. In
ICF experiments the hot-spot ion temperature is deduced
from the width of the reaction products’ spectra, which can
be related to the mean square of the center-of-mass velocity
of ion pairs undergoing this reaction [34]

Texp ¼
m1 þm2

3

R
d3v1d3v2f1f2σvu2c:m:R
d3v1d3v2f1f2σv

; ð11Þ

where v≡ j~vj ¼ j~v1 − ~v2j and ~uc:m: ¼ ðm1~v1 þm2~v2Þ=
ðm1 þm2Þ. Since the reaction cross section σ depends
only on v, the expression on the right-hand side of Eq. (11)
can be shown to recover T0 when f1;2 are Maxwellian
regardless of the fusion reaction. For distribution functions
different from fM, one should expect Texp to also be
different from T0 and, equally importantly, to depend on σ.
The DD cross section is due to larger energies than the DT
cross section and, in the 50∶50 DT mixture, fD is farther
from equilibrium than fT due toGD < GT . As a result, Texp

associated with the DD reaction is lower than that asso-
ciated with the DT reaction, which is confirmed by Fig. 4,
showing the two temperatures evaluated from the direct
numerical solution according to Eq. (11). We also see that
the reduction in Texp is less than that in hσvi. In addition, it
can be found that, unlike the hσvi case, it is the spherical

effects on the distribution function rather than its planar
structure that more strongly affect Texp. This difference
between hσvi and Texp, to leading order, results from the
former being governed by the ion number density within
the Gamow window, whereas the latter is governed by
higher moments and finer features of the distribution
function. The size of the predicted effect is consistent with
the discrepancy between the temperature observed in
exploding pusher experiments, in which NK can be even
higher than shown in Fig. 4, and that predicted by
simulations [3–6]. Of course, in these experiments kinetic
effects can also lower the actual temperature by reducing
the shock heating; however, employing standard formulas
for the spectrum width would diminish the inferred temper-
ature even further.
The DD temperature lower than the DT temperature by

about 25% is often observed in cryogenic implosions at
NIF [35]. The only explanation available to date is based on
the bulk fluid motion [36] and a detailed analysis of this
effect in application to turbulent implosions is presented in
Ref. [37]. However, to give the 25% difference between the
burn temperatures this mechanism requires all the plasma
energy to be kinetic, which is hardly possible during ICF
burn. In a more realistic scenario with the turbulent energy
on the order of the thermal energy it can give 10%–15%
only [37]. The following estimate demonstrates that the
newly predicted effect can be responsible for the remaining
part of the difference.
The turbulence strongly distorts the mixing layer top-

ology, so the approach employed for evaluating the role of
instabilities no longer applies. To estimate the above kinetic
effects in this situation one can view the mix layer as a
suspension of hot plasma droplets in a cold pusher material
[16]. The effective Knudsen number associated with a
given droplet is λð0Þα =L, where L is the characteristic radius
of the droplet rather than of the hot spot. The nominal

Knudsen number for NIF, λð0Þα =Rh, is a few percent [38] and
Rh ≫ L, so the effective Knudsen number should be taken
to be a fraction of unity. Results of Fig. 4 give that the
difference between the DD and DT temperatures grows
with NK , becoming about 12% in the 1–5 keV range for
NK ¼ 0.2. For higher Knudsen numbers, which are likely
according to the above, our approach to suprathermal ions
is complicated; yet, the trend suggests that the DD and DT
temperatures fall apart even further. Also, the mix layer
occupies the outer radii and therefore constitutes a large
fraction of the hot spot. Hence, 10%–15% of the difference
between the DD and DT temperatures can be realistically
attributed to the ion tail depletion and the newly presented
mechanism together with the bulk fluid motion effect
considered earlier [37] can fully explain the observations.
Our predictions are limited by shortcomings of the

kinetic equation (4), which assumes a constant ion temper-
ature in the hot spot. To investigate the robustness of the
newly found effects with respect to a more realistic

FIG. 3 (color online). Volume averaged DT reactivity relative to
Maxwellian computed for the unperturbed spherical hot-spot
boundary (solid) and for the boundary perturbed with ΔR=Rh ¼
1=5 (dashed) and ΔR=Rh ¼ 1=3 (dotted).

FIG. 4 (color online). Volume averaged DT and DD burn
temperature relative to the bulk ion temperature T0 computed

from the direct numerical solution for NðDÞ
K ¼ 0.05 (solid),

NðDÞ
K ¼ 0.1 (dashed), and NðDÞ

K ¼ 0.2 (dotted).
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temperature profile, we have conducted direct numerical
simulations for an isobaric hot spot with the main ion
temperature given by the commonly observed T ¼ T0½1 −
ðr=RhÞ2�2=7 [39]. The results for the reactivity reduction
and the experimentally inferred ion temperatures in terms

of the volume averaged Knudsen numberNðDÞ
K and bulk ion

temperature T̄ turn out to be in reasonable agreement with
their counterparts from Figs. 2 and 4 and show the same
general trends with these parameters. Furthermore, while
the flat profile model presented in this Letter slightly
overpredicts the reactivity reduction, it underpredicts the
difference between the experimentally inferred DD and DT
temperatures. We thus expect that our conclusions quali-
tatively persist in practical hot-spot configurations, though
some quantitative changes are possible.
To summarize, a semianalytical solution to the first-

principles equation for the suprathermal ions in the 1D
geometry has been constructed and provides a computa-
tionally expedient tool for investigating kinetic effects in
complicated geometries. In particular, the analysis demon-
strates that hydrodynamic instabilities at hot spot–pusher
interfaces can substantially aggravate the reactivity reduc-
tion. Moreover, the ion tail depletion results in the
experimentally inferred core ion temperatures being lower
than the actual ones, which may explain recent measure-
ments in exploding pusher implosions and contribute to the
observation that the DD burn temperature is lower than the
DT burn temperature at NIF.
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