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We present a new test of the validity of the Friedmann-Lemaître-Robertson-Walker (FLRW) metric,
based on comparing the distance from redshift 0 to z1 and from z1 to z2 to the distance from 0 to z2. If the
Universe is described by the FLRW metric, the comparison provides a model-independent measurement of
spatial curvature. The test relies on geometrical optics, it is independent of the matter content of the
Universe and the applicability of the Einstein equation on cosmological scales. We apply the test to
observations, using the Union2.1 compilation of supernova distances and Sloan Lens ACS Survey galaxy
strong lensing data. The FLRW metric is consistent with the data, and the spatial curvature parameter is
constrained to be −1.22 < ΩK0 < 0.63, or −0.08 < ΩK0 < 0.97 with a prior from the cosmic microwave
background and the local Hubble constant, though modeling of the lenses is a source of significant
systematic uncertainty.
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Introduction.—Testing the FLRW metric: In addition
to providing tight constraints on cosmological parameters
in specific models, the increasing precision and breadth of
cosmological observations makes it possible to test
assumptions behind entire classes of models. A particularly
important assumption is that the Universe is, on average,
described by the exactly homogeneous and isotropic
Friedmann-Lemaître-Robertson-Walker (FLRW) metric.
More precisely, we consider the assumption that light
propagation over long distances is described by the
FLRWmetric. This can be tested by consistency conditions
between different observables derived from geometrical
optics. Such tests are independent of the matter content of
the Universe and its relation to spacetime geometry (usually
given by the Einstein equation). It has been proposed that
the observed late-time accelerated expansion could be
related to the failure of the FLRW approximation.
Possibilities include extra dimensions [1], violation of
statistical homogeneity and isotropy [2], and the effect
of deviation from exact homogeneity and isotropy on the
average expansion rate, i.e., backreaction [3,4].
Testing the FLRW metric by comparing observations of

the expansion rate and distance was proposed in [5] and
implemented in [6–8]. A similar test using parallax
distance and angular diameter distance was put forth in
[9]. We propose a third consistency test, based on the sum
rule of distances along null geodesics of the FLRW metric,
and apply it to real data. If the sum rule is violated, the

FLRW metric is ruled out. If the data are consistent with
the sum rule, the test provides a model-independent
measurement of the spatial curvature of the Universe, like
the tests proposed in [5,9].
FLRW consistency condition.—Distances: If space is

exactly homogeneous and isotropic, spacetime is described
by the FLRW metric

ds2 ¼ −dt2 þ aðtÞ2
1 − Kr2

dr2 þ aðtÞ2r2dΩ2; ð1Þ

where K is a constant related to the spatial curvature; the
Ricci scalar of the hypersurface of constant proper time is
6K=aðtÞ2. [When K > 0, the metric (1) covers only half of
the spacetime.] The Hubble parameter is H ≡ _a=a, and its
present value is denoted by H0. Let DAðzl; zsÞ. be the
angular diameter distance of a source at redshift zs
(emission time ts) as seen at redshift zl (observation time
tl > ts). From (1), we find that the dimensionless distance
dðzl; zsÞ≡ ð1þ zsÞH0DAðzl; zsÞ is

dðzl; zsÞ ¼
1ffiffiffiffiffiffi
−k

p sinh

� ffiffiffiffiffiffi
−k

p Z
tlðzlÞ

tsðzsÞ

H0dt
aðtÞ

�
; ð2Þ

where k≡ K=H2
0. We denote dðzÞ≡ dð0; zÞ.

Distance sum rule: Using (2), dls ≡ dðzl; zsÞ can be
written in terms of dl ≡ dðzlÞ and ds ≡ dðzsÞ as
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dls ¼ ϵ1ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kd2l

q
− ϵ2dl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kd2s

q
; ð3Þ

where ϵi ¼ �1. For k ≤ 0, ϵi ¼ 1. For k > 0, the signs
depend on which halves of the three-dimensional hyper-
sphere the source and the lens are located and in which
direction the light propagates. If there is a one-to-one
correspondence between t and z and d0ðzÞ > 0, then ϵi ¼ 1.
We assume that this is the case, so we have

dls
ds

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kd2l

q
−
dl
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kd2s

q
: ð4Þ

The relation (3) [or (4)] is a sum rule for distances in the
FLRW universe. [The case (4) is given in, e.g., [10],
p. 336.] In the spatially flat case, the distances are simply
added together, whereas for nonzero spatial curvature, the
relation is more involved. Using (4) in the case jkj ≪ 1 to
obtain a model-independent estimate of the spatial curva-
ture was proposed in [11].
The consistency condition: The sum rule (3) has been

derived from the FLRW metric. We get a consistency
condition by solving for k to obtain (for all ϵi)

kS ¼ −
d4l þ d4s þ d4ls − 2d2l d

2
s − 2d2l d

2
ls − 2d2sd2ls

4d2l d
2
sd2ls

; ð5Þ

where the subscript S indicates that k has been solved from
the sum rule for distances.We now drop the assumption that
theUniverse is described by the FLRWmetric and take (5) as
the definition of a function kSðzl; zsÞ in any spacetime
(neglecting angular dependence). If the Universe is
described by the FLRW metric, k is constant and equal to
−ΩK0, the present value of the spatial curvature density
parameter. If it is observationally found thatkS is different for
any twopairs ðzl; zsÞ, then light propagationon large scales is
not described by the FLRWmetric. The converse is not true:
if kS is constant, this does not imply that themetric is FLRW.
The consistency condition (5) provides a powerful test.

In principle, the FLRW metric can be falsified by meas-
uring the three quantities ðdl; ds; dlsÞ for two different
values of ðzl; zsÞ. The test is very general, because it
assumes only geometrical optics and that light propagation
can be described with the FLRW metric. Unlike the
condition between distance and expansion [5], the con-
sistency condition (5) does not involve derivatives of the
distance. Unlike the condition between angular diameter
and parallax distances [9], there are already measurements
of the distances involved, d and dls, on cosmological scales.
Determining d and dls.—The distance d: The

Union2.1 compilation [12] provides luminosity distances
DL to 580 supernovae (SNe), with arbitrary overall
normalization. The highest redshift in the compilation is
1.4. Normalizing by H0, we obtain dL ≡H0DL ¼
ð1þ zÞd, where the last relation holds in any spacetime
[13]. Our test involves only ratios of distances, so it does
not depend on the value of H0.

In the Union2.1 analysis, the parameters that describe SN
light curves are fitted at the same time as the cosmological
parameters, and it is assumed that the Universe is described
by the spatially flat FLRW model with dust and vacuum
energy, so the resulting distances are model dependent [14].
There are also significant differences between light curve
fitters [15]. However, such effects are likely subdominant to
the uncertainties in the modeling of the strong lensing
systems that we use to determine dls. We, therefore, simply
use the distances to SNe given in [12], with the reported
statistical and systematic errors.
The distance dls: Angular separation between strongly

lensed images of the same source depends on dls=ds and the
structureofthelens.Weassumethatgeneralrelativityholdson
thescaleof the lensingsystem. If the lenscanbeapproximated
as a singular isothermal ellipsoid (SIE), we have [16]

dls
ds

¼ θE
4πf2σ2

; ð6Þ

where θE is the Einstein radius (in radians), σ is the velocity
dispersionof the lens andf is a phenomenological coefficient
that parametrizes uncertainty due to difference between the
velocity dispersion of the observed stars and the underlying
dark matter, and other systematic effects. Observations
suggest the range 0.8 < f2 < 1.2 [17,18].
We consider two different treatments of (6), which we

call models Ia and Ib. In model Ia, we take f ¼ 1. In model
Ib, we model f by assigning an extra Gaussian error of 20%
on dls=ds. Leaving f as a free parameter would signifi-
cantly degrade the constraints owing to a degeneracy
between f and k for −k ≫ 1, due to limited redshift
coverage and the small number of lensing data points.
Wealso consider amore complicated treatmentof the lens,

introduced in [19], where (6) is replaced by dls=ds ¼
Nðα; β; δÞðθα−1E =4πσ2Þ, with α; β, and δ being the slope of
the density, anisotropy of the velocity dispersion, and the
luminosity, respectively. We call this model II. Following
[19],we treatα andβ as universal parameterswith aGaussian
distribution with fixed mean and variance. For δ, we use
values reported for each individual lens. These dependon the
aperture. We treat this variation as a lens-specific error on δ,
assumed to be Gaussian, with the 1σ range given by the
difference between themaximum andminimum values. The
average mean value is δ ¼ 2.39 and the average 1σ error is
0.05.Thevaluesgiven in [19] are not centeredaround theSIE
model, due to nonzero mean anisotropy in the velocity
dispersion and the different slopes of the density and
luminosity. For the mean values of α and β and the value
δ ¼ 2.4used in [19],dls=ds is 12% lower than in the SIE case
(6). In our best fits, themeanvalue ofdls=ds inmodel II is 8%
lower than in model Ia, and 9% lower than in model Ib.
Lensing data: We select strong lensing systems for

which there is awell-measured value for zl, zs, θE, and σ.We
require the lens to be either an elliptical or a lenticular
galaxy, so that it can be modeled as a SIE. We also require
that there is either an Einstein ring or arcs, not just multiple
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images, because without individual spectra, we cannot be
sure that separated images are from the same source. These
criteria leave us with 30 lenses, listed in table II [20]. We
have checked that the lenses are isolated from other galaxies
and clusters. The data is mostly from the Sloan Lens ACS
Survey [21], with additional data from the SIMBAD data-
base [22] and [23]. The maximum source redshift is
zs ¼ 0.98, well below the maximum redshift of 1.4 of
the Union2.1 SN compilation. Following [21], we assign an
error of 2% on θE and a minimum error of 5% on σ.
Data fit and results.—Fitting function: In principle, the

function kSðzl; zsÞ defined in (5) can be reconstructed from
observations, and if it is not constant, the FLRW metric is
ruled out. Such a procedure has been applied to k defined
with the expansion rate and distance [5] in [6,8]. However,
(5) gives a biased estimate of k. If we insert values of dl, ds,
and dls with errors into (5), it will not be centred on the real
value of k. In any case, given the small number of dls=ds
data points, we do not try to find k as a function of redshifts.
Instead, we fit a constant k to the data and consider the
goodness of fit. Large values of χ2=d:o:f: would be
evidence against the FLRW model, or for unaccounted
errors. If the FLRW hypothesis is not rejected, the χ2 values
give the probability distribution of k.
We obtain dðzÞ and k model independently by fitting to

the SN and lensing data simultaneously. As the fitting
function for dðzÞ, we have compared polynomials of
different order, as well as splines, rational functions, and
Bézier curves by fitting to mock data sets of FLRW models
with zero, positive or negative spatial curvature, as well as
the real data. We find that, with current data, it doesn’t
make much difference which function we use, as long as it
is more flexible than a second order polynomial. Note that,
in contrast to attempts to reconstruct the deceleration
parameter or the equation of state [24], we do not need
derivatives of d. We present the results for a fourth order
polynomial. Because dð0Þ ¼ 0, d0ð0Þ ¼ 1, it has three
parameters. Our fitting model, thus, consists of a fourth
order polynomial for dðzÞ, and dls=ds given by (4) with a
constant k, with four parameters in total.
Upper limit on k from CMB andH0: On a hypersphere,

the comoving angular diameter distance is bounded from
above by 1=

ffiffiffiffi
K

p
, so k ≤ 1=dðzÞ2 for all z, and this applies

our k defined by the sum rule (4). Given d0 > 0, the
strongest constraint comes from the largest value of z. We
adopt the model-independent distance DAð0; 1090Þ ¼
12.8� 0.07 Mpc from the cosmic microwave background
(CMB) [25] and the locally measured Hubble parameter
H0 ¼ 72.5� 2.5 km=s=Mpc [26]. (We give error bars as
68% limits and ranges as 95% limits.) These values do not
depend on the assumption that the Universe at late times is
well described by the FLRW metric on large scales. Taking
the 2σ lower bound for both quantities, we have d > 3.1,
which implies k < 0.10. (In fact, the conservative bounds
DA > 12 Mpc and H0 > 60 km=s=Mpc would be suffi-
cient for k < 0.1.)

Probability distribution for k: The χ2 for the SN data is
the same for all three lensmodels, but for the lensingdata, the
χ2 is 78, 20, and 11 for models Ia, Ib, and II, respectively.
Given that we have 30 lensing data points, model Ia under-
estimates the statistical errors, there are systematic problems
with the lensing data or the FLRWmetric does not apply. In
any case, the increased errors of model Ib and the greater
complexity of model II seem to overcompensate. A look at
outliers indicates that the issue is probably systematics. For
model Ia, there are seven lenses that are outliers at more than
2σ. If the reason was problems with the FLRW metric, we
would expect the outliers to show a distinct pattern in
redshifts. Instead, they are distributed randomly, as we
would expect if the problem is unmodeled systematic issues
with the lenses. A 2D Kolmogorov-Smirnov test indicates
that, for model Ia, the probability that the outliers and
nonoutliers are drawn from the same distribution is 29%
[27]. In fact, the lenses’ goodness of fit does not form a
pattern for any of the lensing models. We, therefore,
conclude that the data does not provide evidence for
deviations from the FLRW metric. We produce a
conservative truncated list of lenses by removing the most
extreme outlier, refitting and iterating until all lenses are
within 2σ. This leaves us with 23 lenses for model Ia. For
models Ib and II, we use all 30 lenses, as none are outliers.
We marginalize over the three polynomial coefficients to

obtain the probability distribution PðkÞ. The results are
shown in Fig. 1. Even without a prior on k, the probability
distribution is not Gaussian, and has a tail at negative values
of k. The 95% ranges, mean and best-fit values for k, as
well as the goodness-of-fit values are given in Table I. Our
studies of mock data sets show that, for current data, the
typical offset of the mean and the best-fit from the real
underlying values is much smaller than the error bars.
Imposing the prior on k leads to an increase in χ2 for model
Ia, indicating tension between the lensing and CMB data.
There is no such issue in model II, but given its large number
of parameters, and possible systematic issues with the lenses,
it would be premature to conclude that it is more realistic.
For model Ia, we have −0.63 < k < 1.22, or −0.97 <

k < 0.08 with the prior. For model Ib, the range increases
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FIG. 1 (color online). Probability distribution of k, using the
SIE model (black, solid line), SIE model with additional 20%
error (blue, dotted-dashed line) and the model of [19] (green,
dotted line). The inset shows the case with the prior k < 0.1.
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by a factor of 1.6. For model II, there is a long negative tail,
due to degeneracy between decreasing N and increasing
−k > 0. There is no evidence for spatial curvature.
For comparison, if we assume that the Universe has FLRW

geometry, that the Einstein equation holds, and that the matter
consists of dust and vacuum energy, we obtain −0.53 < k <
0.52 for models Ia and Ib and −0.55 < k < 0.51 for model
II. In this case, the constraints on k ¼ −ΩK0 are dominated
by the SN data, the lensing data is unimportant.
Conclusions.—Results and comparison to previous

work: The kS test based on the distance sum rule (3)
for the FLRWmetric is independent of the matter content of
the Universe and its relation to spacetime geometry on
cosmological scales, though general relativity has been
assumed to be valid when determining dls=ds from astro-
physical systems. We find that the data is consistent with
the FLRWmetric. Treating lenses as SIE with the published
errors and eliminating outliers, the spatial curvature param-
eter ΩK0 ¼ −k is determined to be −1.22 < ΩK0 < 0.63
from SN and lensing data, and −0.08 < ΩK0 < 0.97 when
we include a prior from CMB and H0. These numbers are
sensitive to lens modeling.
This range is 2 orders of magnitude wider than the one

quoted from the latest CMB plus baryon acoustic oscil-
lation data, −0.007 < ΩK0 < 0.006 [28]. That assumes that
the Universe is described by a FLRW model whose late-
time matter content is dust and vacuum energy, and that the
Einstein equation is valid on cosmological scales. However,
tight constraints, −0.007 < ΩK0 < 0.01, are also obtained
in an analysis with loose priors on dark energy, combining
WMAP7 CMB, Union2 SN and big bang nucleosynthesis
data as well as localH0 measurements [29]. Without theH0

value, which is debated [26,30,31], the constraint is
−0.12 < ΩK0 < 0.01. The sensitivity is due to two distinct
effects. First, the overall angular scale of the CMB
anisotropy pattern provides a measurement of the angular
diameter distance to z ¼ 1090, which depends strongly on
the spatial curvature via the hyperbolic sine in (2) [32].
(Note that the labels for the two curvature parameters in
Table I of [32] should be swapped.) However, if the
Universe is not well described by a FLRW model, it is
possible that spatial curvature evolves so that it is only

significant at late times, and is not strongly constrained by
high-redshift probes [4]. Second, the large-angle anisotropy
of the CMB is sensitive to spatial curvature via the late
integrated Sachs-Wolfe (ISW) effect, which is particularly
important in [29]. However, analysis of the ISW effect
depends on assumptions about evolution of dark energy
perturbations, which are rather speculative, particularly if
the equation of state crosses −1.
Model-independent constraints based only on geomet-

rical optics, such as the ones provided here or obtained
from comparison of distance with expansion rate [6–8,31]
or cosmic parallax [9], are, thus, complementary to model-
specific analyses, which involve more assumptions about
the matter content and the theory of gravity.
Future constraints: In addition to strong lensing image

deformation by galaxies, existing observations of time
delays, and both strong and weak lensing by galaxy, groups
and clusters can be used to improve the constraints. Strong
lensing by clusters may be promising, because individual
lenses have several sources and some of the lenses are
tightly modeled. On the other hand, many source redshifts
are higher than current independent measurements of ds.
The Euclid satellite, set to launch in 2020, is expected to
observe 105 strong lensing systems [33]. The usefulness of
these systems for the test discussed here depends on follow-
up observations to determine lens properties. Better under-
standing of the systematics of modeling lensing systems
will be crucial. Given such progress, we can expect
constraints on deviations from the FLRW metric, and on
the spatial curvature of the FLRW universe, to significantly
improve in the near future from the proof of concept we
have presented here. Assuming lens model Ia and a
spatially flat FLRW model with dust and vacuum energy,
104 SNe [34] and 104 lensing data points with current
errors give the constraint −0.03 < ΩK0 < 0.04, within a
factor of a few of the current model-dependent range.
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