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We introduce a new class of nondiffracting optical pulses possessing orbital angular momentum. By
generalizing the X-wave solution of the Maxwell equation, we discover the coupling between angular
momentum and the temporal degrees of freedom of ultrashort pulses. The spatial twist of propagation
invariant light pulse turns out to be directly related to the number of optical cycles. Our results may trigger
the development of novel multilevel classical and quantum transmission channels free of dispersion and
diffraction. They may also find application in the manipulation of nanostructured objects by ultrashort
pulses and for novel approaches to the spatiotemporal measurements in ultrafast photonics.
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Since the development of the laser, and in particular of
mode locking [1] and Q-switching [2] techniques, optical
pulses have attracted a lot of interest, and their development
has influenced many fields of fundamental and applied
research such as atomic physics, spectroscopy, communi-
cations, material processing, and medicine, to name a few
[3,4]. As they are essentially suitable superpositions of
plane waves that travel with different frequencies, optical
pulses tend to diffract in both space and time during
propagation. This feature constitutes a limiting factor for
some applications like lithography [5], where the spatial
broadening affects the quality of the generated mask, or
communication science, where temporal broadening can
induce additional noise between adjacent channels [6]. To
solve these issues, so-called localized waves [7], i.e.,
nondiffracting electromagnetic fields in both space and
time, have been proposed in the last decades, with their
most famous representatives being the X waves. First
introduced in acoustics [8,9], X waves were subsequently
studied in different areas of physics, such as nonlinear
optics [10,11], Bose-Einstein condensates [12], quantum
optics [13], and waveguide arrays [14,15], to name a few.
Recently, they have also been proposed as a possible
solution to efficient free space communication [16].
X waves are polychromatic superpositions of Bessel

waves, and the related vast literature mostly considers
superpositions of Bessel beams of order zero, and neglects
their possible orbital angular momentum (OAM) content
[17]. OAM is indeed related to the twisted wave front of
higher order Bessel beam solutions of the Maxwell
equations [18]. Seemingly, despite some published papers
[19–22], OAM is still seldom associated to ultrashort
pulses, and only very recently have some experimental
results reported femtosecond vortex beams [23,24] and
Laguerre-Gauss supercontinuum [25].

The fact that light possesses both linear and angular
momentum has been known since the pioneering works by
Poynting [26] and Darwin [27]. However, it is only thanks
to the seminal works of Berry and Nye in 1974 [28] and
Allen and Woerdman in 1992 [29] that the OAM concept
was brought into the field of optical beams, where it has
been extensively studied both from a fundamental [30–33]
and experimental point of view, leading to striking appli-
cations such as optical tweezers [34] and spanners [35].
Very recently, OAM has also been proposed as a new
degree of freedom for encoding information in a super-
dense manner, and both its classical [36] and quantum [37]
features have been investigated.
A challenging issue at the moment is generating ultra-

short pulses with variable OAM; this would open unprec-
edented possibilities in terms of light wave transmission
systems unaffected by dispersion and diffractions. In these
terms, a very promising direction is combining the non-
diffracting character of X waves with the superdense
coding by OAM. The well-known resilience of X waves
against the interaction with object and randomness, in fact,
could result in protecting the information encoded into the
OAM of the X wave against perturbations. In particular, for
free space communication, the self-healing character of
X waves may result in a minimization of the turbulence-
driven cross talk between different OAM channels.
Moreover, the extension of the concept of OAM to
untrashort optical pulses might give new insights on
light-matter interaction, as recent works suggest [38].
Following the recent experimental realization of higher

order Bessel beams by holographic techniques [39], in this
Letter we propose a new class of OAM-carrying non-
diffracting pulses. We consider superpositions of mth order
Bessel beams with an exponentially decaying spectrum,
and generalize the well known fundamental X waves [7].
This new class of few-cycles optical pulses is not only an
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exact model for the connection between OAM and the
untrafast photonics, but they are a new tool for OAM-based
free-space quantum and classical communications by
localized waves. We first introduce the general solution
for X waves with OAM. We start from a Bessel beam [40],
namely

ψðR; θ; zÞ ¼ Jm

�
ω

c
sin ϑ0R

�
eimθeiðω=cÞz cosϑ0 ; ð1Þ

where ω ¼ ck and ϑ0 is the Bessel cone angle, i.e., the
beam’s characteristic parameter. Bessel beams carry OAM
because they are eigenstates of the z components of the
angular momentum operator L̂z ¼ −i∂=∂θ with eigenvalue
m [41]. It is well known that Eq. (1) well describes a
monochromatic field. It is not difficult, however, to general-
ize this result to the nonmonochromatic case, where,
following Ref. [7], the scalar field

ϕðr; tÞ ¼ eimθ

Z
dωfðωÞJm

�
ω

c
sinϑ0R

�
e−iω½t−ðz=cÞ cos ϑ0�;

ð2Þ

is an exact solution of the full wave equation, fðωÞ being an
arbitrary spectrum. Equation (2) is known in literature to
describe localized waves, namely field configurations that
are well localized both in space and time. If the following
exponentially decaying spectrum is used,

fðωÞ ¼ ωne−αωΘðωÞ; ð3Þ

where α is a parameter with the dimensions of a time that
controls the width of the spectrum and ΘðωÞ is the
Heaviside step function [42], Eq. (2) with m ¼ 0 describes
the well-known fundamental X waves [7]. For m ≠ 0,
however, Eq. (2) admits the following analytical solution
[43]:

ϕmðr; tÞ ¼
Cn;mξ

meimθ

ðαþ iζÞnþ1 2F1ða; b;mþ 1;−ξ2Þ; ð4Þ

where Cn;m ¼ ðnþmÞ!=ð2mm!Þ, a ¼ ðnþmþ 1Þ=2,
b ¼ ðn þ m þ 2Þ=2, ξ ¼ R sin ϑ0=½cðα þ iζÞ�, ζ ¼
ðz=cÞ cosϑ0 − t is the comoving reference frame attached
to the X wave and 2F1ða; b; c; zÞ is the Gauss hyper-
geometric function [42]. Equation (4) represents a scalar
X wave carrying m units of OAM. Before proceeding
further with our analysis, it is worth noticing that OAM
does not affect the propagation invariant (in time and space)
features of the X waves. Moreover, as ultrashort pulses are
often modeled through an exponentially decaying spectrum
[3], Eq. (4) can be therefore taken as a scalar ultrashort
nondiffracting wave that carries OAM. To correctly
describe an optical ultrashort pulse, however, the scalar
theory is no longer sufficient, and a full vector theory is

required. An exact vectorial solution of Maxwell’s equation
can be built from a scalar function by means of the so-
called Hertz vector potentials [44]. We choose Πðr; tÞ ¼
ẑϕmðr; tÞ as the Hertz potential, and the electric and
magnetic vector fields are given by [44]

Eðr; tÞ ¼ ∇ × ∇ × Πðr; tÞ; ð5aÞ

Bðr; tÞ ¼ ∂
∂t ½∇ × Πðr; tÞ�: ð5bÞ

The explicit expression of the vector electric and
magnetic fields generated with the above equations are
available in the Supplemental Material [45]. The real and
imaginary parts of the x component of the electric field
Exðr; tÞ are depicted in Fig. 1 as a function of the comoving
coordinate ζ. As can be seen, the real part is an odd function
that crosses the axis ζ ¼ 0 three times, while the imaginary
part of the field is an even function, with only two
crossings. This corresponds to single-cycle optical pulses
following the definition in Ref. [46].
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FIG. 1 (color online). Real (a) and imaginary (b) part of the
electric field component Exðr; tÞ as a function of the comoving
coordinate ζ ¼ ðz=cÞ cos ϑ0 − t, for the case m ¼ 1. The real part
is an odd function that crosses the line ζ ¼ 0 three times, while
the imaginary part is an even function, with two crossings.
Parameters: ϑ0 ¼ 0.01 (corresponding to the paraxial case) and
α ¼ 1; ζ is dimensionless.
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This is the first result of this Letter: Eq. (4) and its vector
counterpart, defined through Eqs. (5), represent a new class
of optical pulses, namely fundamental X waves with OAM.
With this result we can investigate the effects of OAM on
optical pulses.
We consider, in particular, the case m ¼ 1; i.e., we

assume to have a single-cycled optical pulse with one unit
of OAM, and we study the connection between OAM and
its temporal properties. We focus our attention on the
Exðr; tÞ component; a similar discussion also holds for
the other components. Figure 2(a) shows the real part of the
field for various values of the OAM parameterm. As can be
seen, OAM affects the pulse’s temporal properties by
changing its carrier frequency. As m grows, in fact,
the pulse’s carrier frequency ωc also increases. Cor-
respondingly, the field oscillates more rapidly, and the
number of the optical cycles changes. To estabilish the
relation between the carrier frequency ωc and the OAM
parameter m, we recall that an optical pulse is written
as the product of an envelope function Aðr; tÞ and a
harmonic term, i.e., Aðr; tÞ exp ð−iωctÞ. As detailed in
the Supplemental Material [45], for a general field, the
carrier frequency can be calculated as the derivative of the
phase ψ of the field in t ¼ 0.
Here, ψðr; tÞ ¼ arg½Exðr; tÞ� and we obtain

ωc ¼
���� ∂ψðr; ζÞ∂ζ

����
ζ¼0

¼ mþ 2

α
; ð6Þ

where α is the spectral width of the pulse and the derivative
has been taken with respect to the comoving coordinate ζ. It
is worth noticing that the result of Eq. (6) is exact only in
the paraxial regime, where ϑ0 ≪ 1. However, although for
the nonparaxial case the expression of ωc is much more
complicated, it can be demonstrated that the variation of ωc
with m can still be well described by a slightly modified
version of Eq. (6), namely ωc ¼ ðmþ 2Þ=αþ σm, where
σm accounts for the nonparaxial corrections. Although σm
actually depends onm, this dependence is very weak, and it
can be treated, at the leading order in m, like a constant
shift. Equation (6) is therefore valid independently of the
value of ϑ0.
Figure 2(b) shows the oscillatory term cosψðr; ζÞ

(which, apart from an unimportant multiplicative factor,
represents the real part of the field Exðr; tÞ [47]) for various
values of the OAM parameterm. This term increases by one
optical cycle every three units of OAM. This result can be
interpreted in a simple intuitive way: as the amount of
OAM carried by the pulse grows, the pulse itself adapts to it
by increasing the number of optical cycles that it is able to
perform under its envelope.
The additional effect of OAM on the pulse is reported in

Fig. 3(a), where the envelope of the field is plotted for
various values of the OAM parameter m. As the amount of
OAM increases, the pulse duration given by its full width at

half maximum (FWHM) Δτ, becomes smaller. To quantify
this OAM-driven compression, we have numerically esti-
mated Δτ for various m, and we show the results in
Fig. 3(b): Δτ decreases exponentially with m. This is the
second result of our Letter. The amount of OAM carried
by a nondiffracting optical pulse affects its temporal
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FIG. 2 (color online). (a) Real part of the x component of the
electric field Exðr; tÞ for different values of the OAM parameter
m. (b) Oscillatory function cosψðr; ζÞ for different values of the
OAM parameter. The choice of these values corresponds to
ωc ¼ 3=α, ωc ¼ 6=α ¼ 2ðωcÞjm¼1, and ωc ¼ 9=α ¼ 3ðωcÞjm¼1,
respectively. When the OAM increases, the carrier frequency
blueshifts, with an increase of the number of optical cycles, but
the envelope FWHM decreases, thus resulting in a shorter pulse.
(c) Calculated (red dots) number of oscillations performed by
cosψðr; ζÞ as a function of m. With every three units of m added,
the number of cycles of cosψðr; ζÞ grows by one unity. The
number of oscillations is calculated by counting the number of
zero crossing N0 of each cosine term and using N0 ¼ 2Nosc þ 1.
Here, ϑ0 ¼ 0.01 (corresponding to the paraxial case) and α ¼ 1
has been chosen. In particular, α ¼ 1 means that ζ is a
dimensionless quantity.
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properties; namely, it varies its time duration Δτ (making it
smaller as m increases) and also changes its carrier
frequency in such a way that the pulse gains an extra
optical cycle every three units of OAM it carries (after the
first one). In other words, in order to have high values of
OAM in propagation-invariant pulses one needs to resort to
higher frequencies and shorter temporal duration. At a fixed
carrier frequency the maximal angular momentum is given
by Eq. (6).
Equation (6), moreover, constitutes a fundamental physi-

cal limit to the amount of OAM that a single cycle pulse can
carry. If, for example, m ¼ 4 units of OAM are assigned to
a single-cycled pulse, then, according to Eq. (6), its electric
field will be able to perform two full cycles (instead of one),
and the pulse will lose its single-cycle character. Although
it may appear that this result limits the possibilities offered
by X waves carrying OAM, one does not have to forget that
this fundamental limit applies only to single-cycled pulses.
If one, instead, uses few- (or many-) cycle pulses, then the
result of Eq. (6) does not constitute a limitation anymore,
but it simply states that the carrier frequency of such an
optical pulse is being shifted by an amount proportional to

the OAM the pulse itself carries. In this latter case, in fact,
the shortening of the pulse duration induced by OAM has
surely a higher impact than the shift of its carrier frequency.
For the case of optical communications, for example, the
OAM-induced pulse shortening has a double effect. On one
hand, being able to use OAM allows one to encode a higher
amount of information per pulse. On the other hand,
however, the OAM-induced pulse shortening allows one
to send more pulses in the same time window, thus
automatically giving the possibility for a denser coding.
In conclusion, we have introduced a new class of optical

pulses possessing OAM by generalizing the well-known
fundamental X waves. We have theoretically investigated
the effects of OAM onto such pulses and shown that, as the
amount of OAM carried by the pulse increases, the pulse’s
carrier frequency increases accordingly, thus resulting in a
shortening of the pulse width and the appearance (at certain
discrete threshold of OAM) of extra field oscillations.
Given the enormous interest that OAM has generated in
the past years, we believe that its extension to the domain of
optical pulses presented here with OAM-carrying X waves
will open the way for new and intriguing applications. For
example, besides optical communications, optical pulses
possessing OAM might be interesting for spectroscopy,
where the presence of OAM could give easy access to the
rotational spectrum of molecules. In addition, as it has been
recently pointed out in Ref. [48], the nonlinear interaction
of optical pulses propagating in a medium has interesting
consequences from the optomechanical point of view,
as it contributes significantly to the radiation pressure.
The introduction of OAM in this picture will surely offer
new ways to control optomechanical effects and to allow
for the investigation of novel regimes of interaction
between light and matter.
As a last observation, the results presented here also set a

fundamental limit to the amount of OAM that a single cycle
nondiffracting optical pulse can carry. This could have
interesting consequences for the case of superdense free
space communication protocols with X waves.
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