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We report a new limitation on the ability of physical systems to perform computation—one that is based
on generalizing the notion of memory, or storage space, available to the system to perform the computation.
Roughly, we define memory as the maximal amount of information that the evolving system can carry from
one instant to the next. We show that memory is a limiting factor in computation even in lieu of any time
limitations on the evolving system—such as when considering its equilibrium regime. We call this
limitation the space-bounded Church-Turing thesis (SBCT). The SBCT is supported by a simulation
assertion (SA), which states that predicting the long-term behavior of bounded-memory systems is
computationally tractable. In particular, one corollary of SA is an explicit bound on the computational
hardness of the long-term behavior of a discrete-time finite-dimensional dynamical system that is affected

by noise. We prove such a bound explicitly.
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Can we use computers to predict the future of evolving
physical systems? What are the computational capabilities
of physical systems? The fundamental Church-Turing
thesis (CTT) [1] and its physical counterparts [2,3] assert
that any computation that can be carried out in finite time
by a physical device can be carried out by a Turing
machine. The thesis is sometimes paraphrased in the
following way: provided all the initial conditions with
arbitrarily good precision, and random bits when necessary,
the Turing machine can simulate the physical system S over
any fixed period of time [0, 7] for T < oo.

However, there exist conceivable situations which, while
respecting all physical principles, would allow for nature to
exhibit behavior that cannot be simulated by computers
[4,5]. Note that the power of a physical process which is
being used as a computer critically depends on our ability
to prepare the system and take measurements of it.
Therefore, the impossibility of simulating some natural
processes does not immediately contradict the CTT. In
particular, it is not clear that the finite state spaces accessed
by (quantum or classical) computers are sufficient to
simulate, with arbitrary accuracy, all of the processes
one finds in nature, which may take place in infinite-
dimensional spaces [4].

Moreover, even if we can simulate a system for any fixed
period of time 7', in many situations one would like to know
more and predict the asymptotic properties of the system as
T — o0, i.e., as it reaches its equilibrium regime. In this
case, the computational unsolvability of problems like the
Halting Problem—itself a long-term property of Turing
machines—implies that rich enough physical systems may
exhibit noncomputable asymptotic behavior [6-17].
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As Feynman describes it [18], to simulate the statistical
asymptotic behavior of a physical system (say, its equilib-
rium regime) means to have a machine which, when
provided with a sequence of uniform random bits as input,
outputs a sequence of states of the system with exactly the
same probability as nature does. Note that even if there is a
finite number of states which are distinguishable for the
physical measurement, the associated probability distribu-
tion may well be continuous. The noncomputable examples
mean that this infinite-time horizon simulation is some-
times just not possible. For instance, there exist computable
dynamical systems (e.g., maps on the unit interval [17] or
cellular automata [19]) for which there is a positive measure
set of initial conditions leading to the same equilibrium
regime—so it is a physical state—that no Turing machine
can simulate in this way.

On the other hand, it has also been observed that this
analysis may be affected by restricting some of the features
related to the physical plausibility of the systems consid-
ered, such as dimensionality, compactness, smoothness, or
robustness to noise—the long-term behavior of such
restricted systems may be easier to predict [4,11,15,16,20].

In this Letter, we report a new bound on the ability of
physical systems to perform computation—one that is based
on generalizing the notion of storage space from computa-
tional complexity theory to continuous physical systems.
More precisely, we provide a formal definition of memory
for physical systems and postulate an explicit quantitative
bound on the computational complexity of their simulations.
According to our postulate, bounded-memory physical
systems should not exhibit noncomputable phenomena even
in the infinite-time horizon. As evidence for our postulate,
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we rigorously prove that for compact noisy systems, the
noncomputable phenomenon is broken by the noise even in
the infinite-dimensional case. Moreover, to substantiate the
quantitative part of the thesis, we show that if the noise is not
a source of additional complexity, then the additional space
requirements for simulating the system below the noise
threshold are minimal.

Consider a closed, stochastic system S = X, over a state
space X. If the time ¢ is discrete, define the memory
available to S as

M(S) = sup sup I,

t  pdistribution on X’

X X)) (1)

Here, I(X;; X, ) is Shannon’s mutual information [21]. If
f(x,y) is the probability density function (PDF) of the
distribution of (X,, X, ), where X, ~p and X, ~X, |,
then

Iy, X,,X,H / flxy log )f())dxdy (2)

We take the supremum over all possible distributions pu.
Therefore, M (S) measures the maximum amount of infor-
mation the system can carry from one time step to the next.
Note that if the space X is finite of size N, then M(S) is
bounded by the entropy H(X,) < log,|X| = log,N. As
discussed below, in the presence of noise, all bounded
finite-dimensional systems have finite memory available.

For continuous-time systems we define the memory
available at time lapse At as the amount of information
that may be preserved for Af time units:

M (S) = sup sup Iy (X Xoinr) (3)

t  udistribution on X

Information theoretic considerations imply that M, (S) is
a nonincreasing function of Az. The time lapse At is chosen
to be the highest among the values of Ar for which the
behavior of the system at time scales below At is dynami-
cally and computationally simple. It is possible to artifi-
cially construct an example where limy,_,o M, (S) = oo,
and where by encoding computation on a shrinking set of
time intervals, the computational power of the system is
unbounded [22]. However, it has been pointed out [23,24]
that quantum mechanical considerations impose an ulti-
mate lower bound Ar > t* [25] on the time it takes for a
physical device to perform one logical operation.

We postulate that the memory M(S) is an intrinsic
limitation on the ability of physical systems to perform
computation. We call this limitation the space-bounded
Church-Turing thesis (SBCT).

SBCT—If a physical system S has memory s = M(S)
available to it, then it is only capable of performing
computation in the complexity class SPACE(s?()), even
when provided with unlimited time.

SBCT is supported by the following assertion.

Simulation assertion (SA).—The problem of simulating
the asymptotic behavior of a physical system S as in SBCT

with n precision bits is
SPACE[(s + log n)°()].

SA implies, in particular, that the long-term behavior of
bounded-memory systems is computable. This covers a
broad class of noisy systems. Interestingly, a number of low-
dimensional systems with noncomputable long-term behav-
ior is known [11-17]. These examples require considerable
care in their construction. As explained below, assuming the
SBCT, one should expect these constructions to be delicate,
to the point of making them physically implausible.

It is clear that SA implies SBCT. While, logically
speaking, the converse also (almost) holds, it is still useful
to make a distinction between the two statements. A low-
memory system S may be hard to simulate, for example,
because of the hardness of the noise operator. Such a
system would violate SA. However, it might still essentially
satisfy SBCT—being incapable of performing computation
outside the class SPACE (s°()))—save for the problem of
simulating S itself.

SBCT can be considered in the context of other quanti-
tative variants of the Church-Turing thesis—notably, the
extended Church-Turing thesis (ECT), which asserts that
physically feasible computations are not only computable,
but are efficiently computable in the sense of computational
complexity theory [26]. Whereas previous discussions of
efficiency focused on time complexity [27-31], we shift the
discussion to storage space complexity (known as space
complexity in the computer science literature). This shift
has the benefit of allowing one to make assertions bounding
the computational power of systems even when provided
with unlimited time—e.g., we can allow the system to reach
equilibrium at t — oo, and then consider the outcome to be
the output of the computation. We assert that this outcome
will still not enhance the computational power of the system
beyond its memory constraints.

In the theory of computational complexity,
SPACE[S(n)] is the complexity class of problems that
can be solved by a Turing machine which uses, at most,
S(n) bits of memory to solve instances of size n [32,33]. Of
particular interest are the classes of problems PSPACE and
LOGSPACE, where S(n) = n°" and S(n) = O(logn),
respectively [34]. Putting these classes in the context of P
and NP, the following chain of inclusions is known:

in the complexity class

LOGSPACE c P c NP c PSPACE.

All of these inclusions are believed to be strict, although
only the fact that LOGSPACE ¢ PSPACE is known.
Space-bounded complexity classes exhibit several impor-
tant robustness properties that do not have a parallel when
considering time-bounded computation. For example, the
space-bounded analogue of P= NP has been resolved
in the affirmative: PSPACE = NPSPACE [35]—thus
PSPACE is closed under the use of nondeterminism. The
question of whether quantum computation speeds up
computation time in some cases, i.e., whether P ¢ BQP,
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remains open, but likely the answer is that it does [36,37].
In the case of space limitations, it is known that
BQPSPACE = PSPACE, and thus quantum computing
is not particularly useful [38] (suggesting that, unlike the
ECT, the SBCT has a good chance of holding in a
quantum world).

A bound of S(n) on the amount of memory used by a
computation means that the machine may be in, at most, 25(*)
distinct states. If the computation is deterministic, this
imposes a natural hard limit of 25(") on its computation time:
the computation either terminates in 25(") steps or ends up in
an infinite loop. If the computation is randomized, then it
naturally translates into a Markov chain onits 25(") states. The
stationary distribution(s) of the chain, which can be computed
in poly[S(n)] space, characterize the infinite-time horizon
behavior of the machine. We assert that, more generally, the
ability of physical systems to remember information is the
limiting factor for their computational power.

While in many cases the complexity of the system falls
below the bound provided by SBCT, the power of SBCT
partially arises from the fact that it is generally much easier
to estimate the memory available to a system than its
computational power or hardness.

The noncomputability constructions mentioned earlier
mean that while analytic methods can prove some long-
term properties of some dynamical systems, for rich
enough systems, one cannot hope to have a general
closed-form analytic algorithm—i.e., one that is not based
on simulations—that computes the properties of its long-
term behavior. This fundamental phenomenon is qualita-
tively different from chaotic behavior, and it has even led
some researchers to claim [39] that the enterprise of
theoretical physics itself is doomed from the outset; rather
than attempting to construct solvable mathematical models
of physical processes, computational models should be
built, explored, and empirically analyzed.

However, it is a notable fact that in all of the specific low-
dimensional examples, the noncomputability phenomenon
is not robust to noise: all of these constructions are based on
a fine structure responsible for Turing simulation which is
destroyed once one introduces even a small amount of noise
into the system. This has been explicitly observed, e.g., for
neural networks [40] and reachability problems [41]. This is
consistent with the SBCT: a low-dimensional compact
system affected by noise becomes a bounded-memory
system, and it is therefore explicitly limited in its computa-
tional power and cannot serve as a universal computer.

In Ref. [42], an interesting example of a constant-
dimensional analytic system capable of robustly perform-
ing universal computation is constructed. However, this
system acts on an unbounded domain and therefore has
infinitely many robustly distinguishable states, i.e., infinite
memory. This is again consistent with the SBCT.

We now turn to the rigorous analysis of discrete-time
dynamical systems over continuous spaces that are affected
by random noise. In such models, the evolution is governed

by a deterministic map 7 acting on phase space X, together
with a small random noise p*. The noisy system S, jumps,
in one unit of time, from state x to 7(x) and then disperses
randomly around 7'(x) with distribution Pf(y)- The param-

eter & controls the magnitude of the noise, so that p7, ()=
T(x) as e — 0 [43]. For example, pf, ) (-) could be taken to

be uniform on an e ball around 7T'(x) or a Gaussian
distribution with mean 7'(x) and variance ¢. In what follows
we will assume, for the sake of simplicity, that the under-
lying system is one dimensional and that size(X’) = 1. That
is, X can be thought of as the interval [0, 1].

By expressing mutual information in terms of entropy
and conditional entropy, it is not hard to estimate the
memory of the system S, for each of these types of noise
(uniform on an & ball or a Gaussian distribution). Indeed, if
fx stands for the PDF of a random variable X, then the
entropy of X is defined by

HX) = - [ fx(0)Toglfx(0)ax.
and mutual information can be expressed as
I(Xt;Xt+l) = H(Xt+l) - H(Xt+l 1X;)-

On the one hand, since H(p®) = ©(log(e)) for both
uniform on an & ball and Gaussian distributions and
since H(X,;;) <0 and X, |X,~ p, we obtain that
I(X,,1;X,) < O(log1/¢). On the other hand, H(X,, ) is
maximized by the uniform distribution on X, having a
value of log[size(X)] = 0. It follows that I(X,;;X,,;) is
maximized by this distribution as well, and therefore
M(S,.) = O(log(1/¢)). The SBCT then predicts that
the computational power of the system S, is in the
complexity class SPACE (log®")(1/¢)).

How can the actual computational power of these
systems be estimated? In order to give an upper bound,
one would have to give a generic algorithm for the noisy
system that computes its long-term features. This would
establish the SA for the system and thus imply the SBCT. In
order to give a lower bound, one would have to show that
even in the presence of noise the system is capable of
simulating a Turing machine subject to memory restric-
tions. We now explain how to prove such bounds.

Since the evolution of these systems is stochastic, only
the statistical properties can be studied. Instead of asking
whether the system will ever fall in a given region B, we
shall ask what is the probability of the system being in such
a region, as t — oo.

These properties are mathematically described by the
invariant measures of the system—the possible statistical
behaviors once the system has converged to a steady state
distribution. Quantities such as Lyapunov exponents or escape
rates can be computed from the relevant invariant measure.
Standard references on this material are Refs. [44-46].

Here, by computing a probability distribution y over [0,1]
we mean to have a finite algorithm A that can produce
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arbitrarily good rational approximations to the probability of
any interval with rational endpoints. That is, the algorithm
A, upon input (a, b, 5) € @3, must output a rational number
A(a, b, 8) satistying |A(a, b, 5) — ula, b]| <. See, for in-
stance, Ref. [47]. This definition is equivalent to the
existence of a probabilistic machine producing a sequence
of states distributed exactly according to u [48].

Our first result, which can be seen as supporting the
qualitative part of SBCT, shows that the addition of any
amount of noise to a system is sufficient to destroy any
noncomputable behavior, even in the infinite-dimensional
case.

Statement A.—If a compact system is affected by small
random & noise as described above, then all its ergodic
invariant measures are computable.

Intuitively, this theorem says noise turns asymptotic
statistical properties from noncomputable to computable.
Its proof essentially follows from the fact that the presence of
noise forces the system to have only well separated ergodic
measures. An exhaustive search can then be performed, and
compactness guarantees that all such measures will be
eventually found (there can only be finitely many of them).
We note that the result holds even if the state space is infinite
dimensional. We refer to Ref. [49] for a complete proof.

Thus, we know that in the presence of ¢ noise, ergodic
measures are all computable. In addition, according to the
SBCT, their computational power should be bounded in
terms of their dimension and size. In order to give an upper
bound, we prove a version of the SA by exhibiting an
algorithm that computes the invariant measure to arbitrary
accuracy using very little space. Specifically, we show the
following.

Statement B.—Let S be a compact, constant-dimensional
system affected by e-Gaussian noise. Suppose that the
transition function f is uniformly analytic and can be
computed to within precision 27 using O(logm)
space. Then, the invariant measure of the noisy system
S, can be computed with a given precision 27"
in SPACE poly(log 1/¢) + poly(log n)].

This statement implies, in particular, that the long-term
behavior of noisy systems at scales below the noise level is
computable in time quasipolynomial in n. Intuitively, this
means that, at the right scale, the behavior of the system is
governed by the efficiently predictable microanalytic struc-
ture of the noise, rather than by the macrodynamic structure of
the system, which can be computationally difficult to predict.

The formal proof of the above statement can be found in
the Supplemental Material [50]. Moreover, up to the
polynomial factors, the statement can be shown to be tight:
we can robustly separate 1/¢ states of S,, and thus we can
simulate a computation that uses ~ log 1/¢ bits of memory.
Therefore, simulation using less than log1/e bits of
memory is impossible due to the space hierarchy theorems
[33]. Note that the output of a precision-27" calculation
requires >n bits to write down. In the context of space-

bounded computation, the output is stored in a write-only

memory that is not part of the computation space. Still, in
order to be able to write to a size-n outside memory, one
needs to at least store indexes using log n bits, and thus the
dependence on 7 is also optimal up to polynomial factors.

The algorithm establishing statement B and its analysis
consists of two main parts. The first idea is to exploit the
mixing properties of the transition operator P of the
perturbed system S,. The transition operator contains
Gaussian noise, and it thus has a spectral gap of at least
exp(—1/¢?) and will mix in time on the order of
T ~exp(—1/¢*). We represent density functions of mea-
sures using piecewise analytic functions with each piece of
size ~e. On each piece we approximate the corresponding
analytic function using ~n terms of its Taylor expansion, so
that the density function is represented by a point in R?,
where D ~n/e. When we consider the action of the
transition operator P on these coefficients, we obtain a
linear map M p whose coefficients can be computed in
space poly(log 1/¢) + poly(log ). By the mixing property,
to approximate the invariant measure of P it suffices to
raise My to the Tth power.

The second part of the argument deals with raising a
D x D matrix Mp to power T = 2P using only poly(log D)
space. To the best of our knowledge, this problem has been
previously addressed when 7 is polynomial but not
exponential in D. The proof in the Supplemental
Material [50] uses a number of techniques in space-efficient
computation to obtain a degree-O(D) polynomial p(-) such
that the entries of p(Mp) — M% have magnitude < 27".

In conclusion, we postulated a principle that allows us to
quantitatively bound the computational power of any
device built out of a closed physical system—even when
the device is allowed to run for an unlimited amount of
time—in terms of the memory of the system. We have
shown that this bound is tight for systems modeled by
randomly perturbed dynamical processes, which account for
a large part of physics. Additionally, we have shown that the
asymptotic behavior of these systems can be computed at
arbitrary precision, and that when computing below the
noise level, the simulation can be achieved using an
extremely limited amount of memory. Concerning quantum
systems, the fact that general models like topological field
theories can be efficiently simulated by quantum computers
[60], which, in turn, can be simulated by classical ones with
only a quadratic increase in memory [38], suggests that our
results apply in the quantum world as well.
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