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A theory for jammed granular materials is developed with the aid of a nonequilibrium steady-state
distribution function. The approximate nonequilibrium steady-state distribution function is explicitly given
in the weak dissipation regime by means of the relaxation time. The theory quantitatively agrees with the
results of the molecular dynamics simulation on the critical behavior of the viscosity below the jamming

point without introducing any fitting parameter.
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Introduction.—A description of granular rheology has
been a long-term challenge for both science and technol-
ogy. The problem extends to a vast range, from solidlike
creep motion, gaslike, to liquidlike phenomena [1]. Similar
to solid-liquid transitions, granular materials acquire
rigidity when the density exceeds a critical value [2-5].
This phenomenon, referred to as the jamming transition, is
universely observed in disordered materials such as colloi-
dal suspensions [6], emulsions, and foams [7], as well as
granular materials. The jamming transition and its relation
to the glass transition have attracted much interest in the last
two decades, and various aspects have been revealed
[8-12]. In particular, characteristics in the vicinity of the
jamming point, including the critical scaling behavior, have
been extensively investigated by experiments and numeri-
cal simulations [2—4,13-25]. It has been shown that the
shear stress, the pressure, and the granular temperature can
be expressed by scaling functions with exponents near
@ ~ @;, where @, is the jamming transition density. The
shear viscosity exhibits a form 5 ~ (¢, — ¢)™* with 1~ 2
for non-Browninan suspensions, foams, and emulsions
[26-29], and a recent careful analysis demonstrated that
A is in the range between 1.67 and 2.55 [30]. It seems that
the exponent A for granular flows takes a larger value than
that for suspensions [18,19,25,31], although a value in the
range mentioned above has been reported as well [17].
However, these studies are based on numerical simulations
or phenomenologies without any foundation of a micro-
scopic theory.

Even when we focus only on the flow properties below
the jamming point ¢;, which can be tracked back to
Bagnold’s work [32], we have not yet obtained a complete
set in describing the rheological properties of dense
granular flows. One of the remarkable achievements is
the extension of the Boltzmann-Enskog kinetic theory to
inelastic hard disks and spheres [33—-38]. However, it has
been recognized that the kinetic theory breaks down at
densities with volume fraction ¢ > ¢, = 0.49 [39-42],

0031-9007/15/115(9)/098001(5)

098001-1

PACS numbers: 45.70.-n, 05.20.Jj, 64.70.ps, 83.50.Ax

since there exists correlated motions of grains. A modifi-
cation of the kinetic theory has been proposed [43], but a
microscopic theory is still absent.

Because of these situations, a microscopic liquid theory
valid in the regime ¢, < ¢ < ¢; has been desired. One
attempt to respond to this problem is the extension of the
mode-coupling theory (MCT) [44] for dense granular
liquids. MCT has been applied to granular systems driven
by Gaussian noises [45-47]. It qualitatively predicts a
liquid-glass transition, though the noise in granular systems
is non-Gaussian in general [48-51]. MCT also has been
applied to sheared dense granular systems [52-54]. There
are three disadvantages of this approach: (i) the shift of ¢ is
necessary to describe the divergence of #. (ii) Because of
the shift of ¢, the jamming transition is not correlated with
the divergence of the first peak of the radial distribution
function. (iii) It predicts a plateau in the density correlation
function, which is not observed in experiments nor in
simulations [55-57].

From these observations, it is crucial to obtain an explicit
expression of the steady-state distribution function to
construct a theory for dense granular liquids. For our
purpose, we attempt to perform an expansion with respect
to the dissipation to obtain an approximate explicit expres-
sion of the distribution function, valid in the weak dis-
sipation regime for frictionless granular flows. Once the
distribution is obtained explicitly, it is possible to calculate
the steady-state average for arbitrary observables.

Microscopic starting equations.—We consider a three-
dimensional system of N smooth granular particles of mass
m and diameter d in a volume V subjected to stationary
shearing characterized by the shear-rate tensor y. We assume
that each granular particle is a soft-sphere, and the contact
force acts only on the normal direction. For a simple uniform
shear with velocity along the x axis and its gradient along the
y axis, the shear-rate tensor is y,, = 70,0,y (4,V = X, y,2)
with a shear rate y. It is postulated that the applied shear
induces a homogeneous streaming-velocity profile ¥ - r at
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position r, assuming that no heterogeneity such as shear
banding exists. Thus, the equation of motion is given by

7T, (1a)

pi= Fgel) +F§Vis) -7Di (1b)

pi = m(F;

where F and F are, respectively, the elastic and the
viscous contact forces acting on the grain i. Equation (1) is
known as the Sllod equation, which is equivalent to
Newton’s equation of motion under a uniform shear [58].

The most essential feature of granular systems, in
contrast to thermal systems, is that the steady state is
determined by the balance between the viscous heating and
the energy dissipation due to inelastic collisions. For
sheared granular systems, this can be seen from the time
derivative of the Hamiltonian, H(I') = >_¥  p?/(2m)+
>.iju(ri;), where u(r;;) is the interparticle potential
depending on r; =lr;—r;[, T={r,p;}Y¥, is the
phase-space coordinate, and ), " is the summation under
the condition i # j. Then H( ) ‘satisfies

H(T) = —7Vo,,(T) — 2R(T), (2)
where

1K [pigpi,
ou®) =5 Y [Pl i,

i=1

SFSHFR) )

is the stress tensor and

Z vm (4)

corresponds to the Rayleigh’s dissipation function [59,60].
For granular systems with the interparticle dissipative
force proportional to the relative velocity, it is impossible
to reduce the dynamics as overdamped For later analysis, we
assume that the contact forces F =zl lel and F; (i)
Do UV'S are, respectively, given by F,; (e =kO(d—r;;) x
(d—r; )andF vis) =—{0O(d- r,j)(v---r--)r,j,where(a( x)=1
forx>0 and@( ) = Ootherwise,r;; =r; —r,F;; =r;;/r;s
and v;; = v; —v; with the velocity of ith particle v;.
Steady-state distribution function.—To address the dis-
tribution function for the nonequilibrium steady state, we
start from an equilibrium state at t - —oo and evolve the
system with shear and dissipation. Then, the system is
expected to reach a steady state at t = 0. Although it is
impossible to derive an exact solution of the Liouville
equation, equivalent to Eq. (1), for the 6/N-dimensional
distribution function, it is possible to obtain an approximate
solution by perturbation, parallel to the method for the
linearized Boltzmann equation [70]. In the perturbation for
dense sheared granular systems, it is simple to obtain the
leading-order eigenfrequency of the relaxation towards the
steady state [60]. Hence, we attempt to speculate an
approximate steady-state distribution, which we denote

pss(I'), by applying an approximation which explicitly
utilizes the relaxation time.

For this purpose, we start from a formal but exact
expression for the distribution function [58],

AT = exp [ I drszeq[r<—r>1]peq[r<—oo>1, (5)

which is the steady -state solution of the Liouville equation.
Here, Qg (I)=feq H(L)=A(L)==feq[1 Vo, (D) +2R(T)] -
A) is the work function for p.q(T) =e P}/
f dTe~P«MT) attemperature T;=fs, , where A(')=(0/T)-
I is the phase-space volume contraction. We approximate
Eq. (5) by introducing the relaxation time 7, as

0
exp |:/ dTQeq [F(—T)]:| ~ gTrelQSS(F)’ (6)

which can be validated in the perturbation expansion of the
Liouville equation around the canonical distribution [60]. In
the perturbation, we nondimensionalize all the quantities,
where the units of mass, length, and time are chosen as m, d,

and /m/k, and introduce ¢ = {/+/km < 1 asaperturbation
parameter, which is related to the restitution coefficient e as
e~/2(1 —e)/x for e ~ 1. We attach a star * to the non-

dimensionalized quantites, e.g., * = t+/k/m. Furthermore,
we perform a scaling which leaves the steady-state temper-
ature T'sg, which is the ensemble average of >V | p?/(3Nm)
at the steady state in the dimensional unit, to be independent
of e. This indicates that the granular fluid keeps its motion in
the limit ¢ — 0. From dimensional analysis, T'gg satisfies
Tss ~m3d*y* /{2, which leads to Tig ~ e7%7**. Hence, Y

should satisfy j* ~ el/ 2, We introduce a scaled shear rate 7 as

7* = €'/27, where 7 is independent of e. We attach a tilde to
the scaled quantities. The relaxation time 7, is evaluated
from the eigenfrequency of the perturbation expansion as

2w -
Trel = [%.ewE(TSS)} (7)
in the hard-core limit [60], where wg(T)=

4/mn+\/T /mg,(p)d® is the Enskog frequency of collisions
and go(¢) is the first-peak value of the radial distribution
function. In Eq. (6), we have also introduced

Qss(T) = —fss[1Vols (T) + 2ARY (D)), (8)

where agl ) and ARéls) are, respectively, given by [60]

N
(el) 1 PixPiy (el)
v (F) =< S iF' s
SO =g [ erd] o
ARW () = RO(T) + 188 Ar 10
ss(I) = ()+2() (10)
¢ Dij .
R(l)(r) _421-’1-/(;]' 1]) ®(d_rlj) (11)
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Here we ignore the contribution from the viscous shear
stress, which is a higher-order correction in the limit € — 0.
To summarize, we obtain

e~ Iss(I)
= [ dre s

where I55(I') = fssH* (D) — T Qs () with Qgg(T) =
—Ps [%V*&ii')(r) + 2A7:\’,§IS) (')]. We note that (i) the
steady-state temperature Tss = g4 appears in Eq. (12),
(i) the steady-state average (---)gs= [dLpss(T)--- is
independent of the equilibrium temperature for pq(I),
(iii) the problem reduces to an “equilibrium” one with an
effective Hamiltonian H¢ (') = Tss/ss(I") and the temper-
ature T'gg. Because the nonequilibrium contribution is small,
we further expand pgg(I) as

pss(I) (12)

e_/jgsH* <F> [1 + %relfzss (r)}
Z

with Z & [ dlePs™ M1 4 7,,Qgs(T)]. An approximate
expression for (A(T'))g is obtained as

(A(T))ss ~ (A(D))eq + Tt (AN Qs (D)) eqe (14

where (- ), = [ dlePss"' ™). . istheaveragewithrespect
to the canonical distribution at T'gg. It should be noted that
Eq. (14) is the result of an exponential damping in the stress-
stress correlation function in the Green-Kubo formula.

So far Tgg is undetermined. We attempt to determine 7'gg
by imposing the energy balance

(H(D))ss = =V{(05(T))gs = 2(R(M))ss = 0. (15)

The explicit form of Tsg will be given in Eq. (16).
Shear viscosity and temperature.—Now we calculate the
steady-state average of the shear stress and the energy
dissipation rate by Eq. (14) and derive an explicit expres-
sion for Tgs. First, (0,,(I"))ss is approximately given
~ ~ oo vk ~(el ~ (el o
by (Z1y(D))ss & —FraiBss V(54 (D)5 (I)),q. Similarly,
the leading contribution gives (R(I))gs ~ <R(1)(I’)>Cq—
27,afs (ﬁ(l)(F)AngS) ('))eq- Thus, we obtain the steady-
state temperature from Eq. (15) as

pss(I') ~ (13)

37 S

*

$$ 7 32zR

where § and R are given by S =1+ Sn*go(p) +
S ?go(9)® + Sango(p)’  and R = n*go(@) [R5 +

Lt go(@)], with S, =27/15, S3=—x/20, S, =37>/160,
R,y =-3/4, and R, =7x/16 [60]. We adopt the
interpolation formula for hard spheres valid in the
range @; <@ <@, (p; =049, ¢; =0.639), gy(p) =
gcs ((ﬂf)((ﬂf -¢;)/(@— (Pf)v where gcs(@) = (1 -9/2)/
(1 — ¢)? is the formula by Carnahan and Starling valid at
@ < @5 [71]. Note that we adopt the Kirkwood approxi-
mation for many-body correlations [60]. We further obtain
the expression for the shear stress,

3WV6 -,  §3?
F— y .
642" R'2gy (o)

(01y(T))gs = (17)
In the vicinity of the jamming point ¢;, S and R can be
approximated as S~ Syn*3gy(@)* and R~ Rin"2gy(p)?,
respectively. This leads to the following expressions,

.2 T
T ~m7 n*go(9), (18)
2777.'5/2 )
G (D)) = —— 2120 (0)52, (19

from which we obtain
Tis~ (@ — )7, (20)
<5xy(r)>ss ~ ((pJ - @-5/2_ (21)

From Eq. (17), we obtain the shear viscosity 5" =
—~<5xy(r)>ss/}" ~(p; - (ﬂ):5/2’ or for 7' = —<5xy(r)>ss/
(Y T;S) & _<5xy (F)>SS/7}2’

i~ (p;— @)™ (22)

These results in Eqgs. (20)—(22) are consistent with the
previous observations [26-30].

Comparison with simulation.—In order to verify the
validity of the theory, we compare the theory with the
molecular dynamics (MD) simulation. The parameters in
the MD are N = 2000, ¢ = 0.018375, and 7* = 1073, 1074,
107>, This condition corresponds to e = 0.96.

The shear viscosity #/ and Tgg are shown in Fig. 1,
together with the results of the MD. We also show the

(b) 104
1031 .
102

.

FIG. 1 (color online). The density
dependence of (a) the shear viscosity 7/
and (b) the granular temperature. The result

>, 10
&~

1

107

102

A of the theory is shown in the (blue) solid
line, while that for the MD is shown in (red)
triangles, (blue) diamonds, and (green)
rectangles for y* = 1073,1074,107. (Inset)
The log-log plots for the results near

0.5 0.55 0.6 0.65 0.5 0.55

0.6 0.65 ¢@; = 0.639.
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FIG. 2 (color online). The density dependence of the relaxation
time, 7., = 7. The result for the shear rate 7* = 10~ is shown
in the (blue) solid line for the theory and (blue) diamonds for the
MD simulation.

log-log plots near ¢; as a function of ¢; — ¢ in the inset.
From the figure, we see that the theory agrees with the
result of MD simulation for ¢ < ¢; quantitatively, without
introducing any fitting parameter. The agreement is refined
as the shear rate is decreased, where the hard-core limit is
realized asymptotically. The smeared divergence in the
vicinity of the jamming point observed for finite y* is a
well-known feature of the soft-core MD. We stress that the
theory predicts the divergence of both the shear viscosity
and the granular temperature as ¢ — @, in contrast to the
kinetic theory of inelastic spheres, where the shear viscosity
behaves as if' ~ (p; — @)~! and Tsg remains finite [35]. On
the other hand, in the MD, the shear viscosity behaves as
i ~ (@; — )72, in accordance with the theory. We note
that the agreement between the theory and MD is relatively
poor for Tgg, though we have not clarified its reason.
The relaxation time, Eq. (7), is shown in Fig. 2, together
with the result of the MD. The result of the MD is extracted
from fitting by an exponential function for the transient data
of the temperature relaxing to the steady state. We see that
Eq. (7) is quantitatively valid for ¢ < 0.63.
Discussions.—From Eqgs. (16) and (17), we see that the
theory is subjected to the Bagnold scaling. The result of
MD shows that the discrepancy from the Bagnold scaling
becomes significant for ¢ > 0.635. Hence, there is room
for improving the theory to cover the non-Bagnold regime.
From the phenomenological scaling of jammed granules,
the viscosity exhibits 17 ~ |, — @|*#(!=2/%), where y,, and
y, are the scaling exponents for ,, ~ (¢ — @) for ¢ >
@y and 6y, ~ 7’ at ¢ = @, [18]. If we assume y;, = 1 asin
Refs. [2,3,18,19], we have y, = 4/7, which is close to the
value of Refs. [17,72]. For strongly dissipative situations,
higher-order terms might alter the exponents of the diver-
gences. Such a contribution will be discussed elsewhere.
Concluding remarks.—We have developed a theory for
jammed frictionless granular particles subjected to a uni-
form shear with the aid of an approximate nonequilibrium
steady-state distribution function, and have shown that it
remarkably agrees with the result of the MD simulation
below the jamming point without introducing any fitting
parameter. There are many future tasks for the application

of our theory, such as the emergence of the shear modulus
above the jamming point [2-5], the effect of friction for
grains where the discontinuous shear thickening appears
[73], the drag force acting on the pulling tracer [74-78],
etc. Moreover, we should stress that the framework of
our theory is quite generic. Indeed, we believe that the
divergence of the viscosity for colloidal suspensions, 77 ~
(p; — @)~ [79], can be understood by our framework.
Therefore, the theory is expected to be applicable to a wide
variety of phenomena in nonequilibrium processes.
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