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Andreev-Bragg Reflection from an Amperian Superconductor
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We show how an electrical measurement can detect the pairing of electrons on the same side of the Fermi
surface (Amperian pairing), recently proposed by Patrick Lee for the pseudogap phase of high-T'. cuprate
superconductors. Bragg scattering from the pair-density wave introduces odd multiples of 2k; momentum
shifts when an electron incident from a normal metal is Andreev reflected as a hole. These Andreev-Bragg
reflections can be detected in a three-terminal device, containing a ballistic ¥ junction between normal
leads (1, 2) and the superconductor. The cross-conductance dI,/dV, has the opposite sign for Amperian
pairing than it has either in the normal state or for the usual BCS pairing.
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Introduction.—Doped Mott insulators exhibit new sym-
metry-broken states of matter with coexisting magnetic,
charge, and superconducting order [1-3]. Notable exam-
ples of such “intertwined order” are superconductors with a
pair-density wave (PDW), such that the Cooper pairs
acquire a nonzero center-of-mass momentum [3-8]. In
the first proposals by Fulde, Ferrell, Larkin, and
Ovchinnikov (FFLO) the PDW order was induced by an
external magnetic field [9,10], but it can appear with
preserved time-reversal symmetry in doped Mott insulators
(and possibly also in a broader context [11]).

In a remarkable recent paper [12], Patrick Lee has carried
this development to its logical end point, by proposing
PDW order with the maximal 2k Cooper pair momentum.
The pairing mechanism comes from the gauge field
formulation of the resonating valence bond theory of
high-7'. superconductivity [1,13-16], where -electrons
moving in the same direction feel an attractive force
analogous to Ampere’s force between current-carrying
wires [17]. Lee has proposed this Amperian pairing
to explain the diversity of anomalous properties that
characterize the pseudogap phase in underdoped cuprate
superconductors, including the appearance of Fermi arcs
in the quasiparticle spectrum [18], charge order with a
doping-dependent wave vector [19-28], and indications of
short-range superconducting order [29-32].

Phase-sensitive experimental tests for Amperian pairing
are hindered by phase fluctuations and the nucleation of
vortex antivortex pairs that are believed to suppress long-
range phase coherence [12]. Here we propose to use
Andreev reflection as a phase-insensitive probe, which
being a local process would not require long-range super-
conducting order. Earlier studies of the FFLO state have
indicated that conductance spectroscopy shows signatures
of the nonzero momentum of Cooper pairs [33-36], but
these are typically small effects. We find that the extreme
2kr momentum transfer upon Andreev reflection from an
Amperian superconductor changes the sign of the current in
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a three-terminal configuration, allowing for a well-defined
experimental test.
Model.—We study the mean-field Hamiltonian

H= ka(k)c,tﬂck(, + Z{:[AQ,, (k)eg cp s +Hel (1)

with square-lattice dispersion

(k) = =2t(cos k, + cos k,) — 41 cos k, cos k,
— 21" (cos 2k, + cos 2ky) — p (2)

(nearest neighbor hopping energy ¢, chemical potential yu,
lattice constant a = 1). To make contact with the cuprate
superconductor Bi,, ,Sr,_,CuOg, 5 (Bi2201), we have also
included further-neighbor hopping energies ¥ = —0.2¢ and
" = 0.05¢ [26].

The PDW order parameter A (k) describes pairing with
total momentum Q,; = 2K; (up to a reciprocal lattice vector)
near the points K; € {+K,,+K,} where the free-fermion
Fermi surface crosses the boundary of the first Brillouin
zone [see Fig. 1(b)]. This pairing of electrons on the same
side of the Fermi surface defines the Amperian super-
conductor [12].

Following Lee [12], we take a phenomenological
Gaussian profile (width k;) for the k dependence of
the order parameter near the momenta K; and their
images upon translation by a reciprocal lattice vector
27j =2n(n,m), n,m € Z:

A |k — K; — 2mj|?
Ag, (k) = ngexp (‘2—% )

By choosing the coefficient C such that Ay (K;) = A, the
usual BCS order parameter follows in the limit ky, — oo at
K; = 0. In what follows we set Ay = 0.4t and ky = 1.2.
We take chemical potential 4 = —0.75¢ corresponding to
hole doping fraction p = 0.14 deep inside the pseudogap
phase [1]. The wave vectors Q; for this doping are £Qé,
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FIG. 1 (color online). (a) Density of states p(E, k) as a function
of energy E and momentum k, integrated over k, € (—z, 7).
Only the electron contribution is shown (in units of 1/¢), the full
density of states also includes the hole contribution p(—E, —k) to
ensure particle-hole symmetry. (b) Density of states as a function
of k, and k,, integrated over a narrow energy interval around the
Fermi level £ = 0. The Amperian pairing takes place near the
momenta +K, and £K, where the free-electron Fermi surface
crosses the boundary of the first Brillouin zone (black arc and
arrows). The PDW with wave vector +Q, or +Q, has a
periodicity of 8 unit cells. This folds the Brillouin zone, but
for clarity the figure shows the bands unfolded (extended zone
scheme). Inset: Magnified region of the Brillouin zone near
ky, = —3r/8, showing a minigap.

and +Q.é, with Q, = n/4, corresponding to a PDW
periodicity of 8 square-lattice unit cells.

Density of states.—To prepare for the calculation of the
Andreev reflection probability at a normal-superconductor
interface, we have first computed the electron density of
states in the unbounded superconductor. We use the KWANT
toolbox for all our tight-binding calculations [37]. The

result in Fig. 1 shows the characteristic features of an
Amperian superconductor identified by Lee [12]: Fermi
arcs and gaps both above and below the Fermi level, in
good agreement with experimental data from angle-
resolved photoemission spectroscopy (ARPES) [18,26]
and scanning tunneling microscopy [22]. Close inspection
reveals that the Fermi arcs are interrupted by a multitude of
minigaps [cf. inset of Fig. 1(b)], originating from higher
order Bragg reflection processes with a momentum shift
>niQ; (n; € Z). Lifetime broadening would presumably
hide these minigaps from ARPES measurements.

Andreev-Bragg reflection.—We now introduce an inter-
face with a normal metal along the line x = 0, extended in
the y direction over 256 lattice sites with periodic boundary
conditions. The Amperian superconductor is at x > 0, with
Hamiltonian Eq. (1), while for the normal metal at x < 0
we take a nearest-neighbor tight-binding Hamiltonian
(same a and r, u = —0.5t, Ay = 0, ¢ = " = 0). We adopt
the so-called maximum contact boundary conditions of
Ref. [34], whereby the periodic modulation of the order
parameter in the x direction has a maximum at the x = 0
interface.

We inject an electron with energy E and transverse
momentum k" from the normal metal towards the super-

conductor and calculate the probability R(E, ki, k") for
Andreev reflection as a hole with transverse momentum
k;“t. Figure 2(a) shows the total Andreev reflection

probability

ya

R (E. ki) = / JRUR(E. K ko), (4)
-

while Fig. 2(b) shows how the probability at the Fermi-

level R(0, kM, k9") varies as a function of incoming and

outgoing transverse momenta.

As can be seen in Fig. 2(a), there are distinct regions I, II,
II of nonzero R, each with a gapped density of states
[cf. Fig. 1(a)]. The corresponding Andreev reflection
processes can be understood by recalling that the
Amperian superconductor is described by a bidirectional
(checkerboard) modulation of the order parameter with
periodicity 27/ Q, along both the x and y directions. Since
the interface is parallel to the y direction the modulation
along x gives rise to usual Andreev retroreflection without a
momentum shift (region III). In contrast, the modulation
along y produces Andreev-Bragg reflection with transverse
momentum shift nQy (n € 2Z + 1). The order n = +1 and
n = %3 processes are visible in Fig. 2(b), in regions I and
I, respectively. Momentum shifts at even multiples of Q,
do not appear, because these produce only normal reflec-
tion (without electron-to-hole conversion).

The angular dependence in real space of the Andreev
reflection processes of type I, II, and III is shown in Fig. 3.
The directionality of Andreev-Bragg reflection is centered
around specular reflection (6;, = 6,,), with a broad spread
of angles for the first-order Bragg shift (type 1) and a
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(a) Total Andreev reflection probability [Eq. (4)] as a function of energy E and incoming transverse momentum
integrated over the outgoing transverse momenta k}™. The regions of nonzero R, correspond to the gapped regions in

Fig. 1. (b) Andreev reflection probability at £ = 0 as a function of incoming and outgoing transverse momenta. The diagonal black lines
correspond to momentum shifts 9" = kif‘ + nQg, n € Z. Region I around £ = 0 and kf;‘ = 0 exhibits Andreev-Bragg reflection with
transverse momentum shift O, between the incoming electron and the outgoing hole. Region II shows transverse momentum shifts of
3Qo. [The resonance lines labeled 11 in panel (a) are interrupted by the finite &, resolution.] Region III supports Andreev retroreflection
(without transverse momentum shift), because the periodic modulation of the order parameter is perpendicular to the normal-
superconductor interface. Region IV (white) has no incoming electron modes from the normal metal.

narrow collimation for higher orders (type II). The conven-
tional Andreev retroreflection (type I, 6;, = —0..)
appears only near grazing incidence.

Method of detection.—FElectrical detection of momentum
transfer upon Andreev reflection has been proposed in
the context of FFLO superconductors, notably using a
magnetic-flux controlled interferometer [36]. (A similar
Aharonov-Bohm interferometer has been proposed [38] to
detect specular Andreev reflection in graphene [39].) Here
we investigate an alternative electrical method of detection
of Andreev-Bragg reflection that relies on ballistic trans-
port, but does not require long-range phase coherence and
might therefore be more easily realized.

We consider the three-terminal Y junction of Fig. 4
(inset), similar to geometries considered for the detection of
“Cooper pair splitting” [40]. One difference with those
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FIG. 3 (color online). Right panel: Same as Fig. 2(b), but now
as a function of angles 6 of velocities (measured in degrees) rather
than transverse momentum k,. The left panel indicates the
geometry of the normal-superconductor (NS) interface, with
retroreflection corresponding to 6,,, = —6;, and specular reflec-
tion to O,y = O;y.

experiments is that here the size of the junction is much
larger than the superconducting coherence length (which is
on the order of a few lattice constants). The current /,
flowing into the grounded normal-metal contact 1 is
measured while the other normal-metal contact 2 is biased
at voltage V5. (The superconductor is also grounded [41].)
The differential cross-conductance dI;/dV, is expressed
by a three-terminal variation of the Blonder-Tinkham-
Klapwijk formula [42],

a2 =
dv, h

df(E - €V2)

AEIT o(E) - An(B) =22,

(5)

—o0

in terms of the probabilities (summed over all transverse
modes) for an electron to be transmitted from contact 2 into
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FIG. 4 (color online). Computer simulation of the

differential cross-conductance for the Y junction geometry
shown in the inset. The sign of the cross-conductance
dl,/dV, x T, — Ay distinguishes Amperian  pairing
(A1, > T,,) from BCS pairing (T}, > Ajy).

097001-3



PRL 115, 097001 (2015)

PHYSICAL REVIEW LETTERS

week ending
28 AUGUST 2015

10

=
~
(o]
9,
/?\1\ //
> 0
o
~
= ” W =128
= W= 144
Py W =160
= 10 1 w=176
=  ow =192
E F w =208
i w =256
-20
0 1 2 4 5 6

3
W/ L mf

FIG. 5 (color online).  Effect of disorder on the cross-conductance
of Fig. 4, for Amperian pairing at V, = 0. The data are averaged
over four disorder realizations (error bars show standard error of
the mean). Data collapse for different system widths W is achieved
by rescaling the conductance by a factor W,/W, with
Wy =256. The negative cross-conductance persists for
W/ ¢ mf S 2.

contact 1, either as an electron (normal transmission
probability T',) or as a hole (crossed Andreev reflection
probability A;,). The probabilities are integrated over
energy E, weighted by the derivative of the Fermi distri-
bution f(E) = (e + 1)1

We have performed computer simulations to determine
whether such a device has sufficient angular resolution to
distinguish Andreev-Bragg reflection from the usual retro-
reflection. We took a 60° angle between the two normal-
metal leads, each 146 lattice constants wide, with open
boundary conditions. The conductance was calculated from
Eq. (5) at a temperature of 0.01A,. We compared Amperian
pairing with BCS pairing, keeping all other parameters of
the tight-binding Hamiltonian the same.

The results plotted in Fig. 4 demonstrate that for a large
range of voltages the differential cross-conductance is
negative in the Amperian case (A, > Ty,, because
Andreev-Bragg reflection dominates) and positive in the
BCS case (T, > A|,, because retroreflection dominates).
Notice that an entirely normal system would have A}, = 0,
hence, dI,/dV, > 0—so the negative cross-conductance
can only originate from Andreev reflection.

Effects of disorder and interface barrier.—Because the
negative cross-conductance is a ballistic effect, strong
impurity scattering will obscure it, but the sign change
should persist if the mean free path £,; is not much smaller
than the width W of the junction. To confirm this, we model
electrostatic disorder by a random on-site energy with a
Gaussian distribution with variance o2, resulting in
Comp = hp(22Nyo?) ™' 2 0.9(t/5)?. (We have used that
the metallic part of the Y junction has a nearly circular
Fermi surface, with density of states per spin N.) Results
shown in Fig. 5 confirm our expectation.

Another detrimental effect is the presence of a barrier at
the interface with the superconductor, since this would
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FIG. 6 (color online). Effect of an interface barrier (height Ep,
length 6L = 3, width W = 256) on the cross-conductance of
Fig. 4, for Amperian pairing at V, = 0. The sign changes occur
when the average normal-state transmission probabilities of the
barrier are Tz = 0.68 (Eg = —0.63¢) and Tz = 0.50 (Ez = 1.51).
The T'p’s are calculated by averaging over all the incoming modes
at different energies, weighted with the Fermi distribution.

suppress Andreev reflection in favor of normal reflection.
The computer simulation of Fig. 6 shows that the effect of a
tunnel barrier has a significant electron-hole asymmetry,
but eventually for barrier heights |Ep| = ¢ the negative
cross-conductance disappears. A high quality interface is
therefore needed.

Conclusion.—We have shown that Andreev reflection
from an Amperian superconductor involves a transverse
momentum transfer of odd multiples of Q) = 2k, because
of Bragg scattering from the pair-density wave. Computer
simulations show that this Andreev-Bragg reflection can be
detected in a Y junction, through a sign change of the
differential cross-conductance. Long-range phase coher-
ence is likely to be absent in the Amperian superconductor
[12], but since Andreev reflection is a local process we
expect the predicted experimental signature of the 2kp
pairing to be robust and accessible.

The experimental signature of Andreev-Bragg reflection
proposed here in the context of cuprate superconductors may
be of use in other contexts as well. The pair-density waves
predicted in Mott insulators [3] have crystal momentum on
the order of the inverse lattice constant, and might therefore
be detected via a negative cross-conductance in the
geometry of Fig. 4. Ultracold fermionic atoms in a two-
dimensional optical lattice provide an altogether different
realization of the Hubbard model [43]. Thus, these systems
may also support PDW states, which can potentially be
detected via Andreev-Bragg reflections. An energy-resolved
scattering experiment is challenging in that context, but in
light of the recent observation of conductance quantization
in a cold atom setup [44], the analogue of negative cross-
conductance may become observable as well.
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Netherlands Organization for Scientific Research (NWO/
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