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Recently it has been theoretically proposed and experimentally demonstrated that a spin-orbit coupled
multicomponent gas in a 1D lattice can be viewed as a spinless gas in a synthetic 2D lattice with a magnetic
flux. In this Letter we consider interaction effects in such a Fermi gas, and propose these effects can be
easily detected in a charge pumping experiment. Using 1=3 filling of the lowest 2D band as an example, in
the strongly interacting regime, we show that the charge pumping value gradually approaches a universal
fractional value for large spin components and low filling of the 1D lattice, indicating a fractional quantum
Hall-type behavior, while the charge pumping value is zero if the 1D lattice filling is commensurate,
indicating a Mott insulator behavior. The charge-density-wave order is also discussed.
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High spin quantum gas is a unique system of cold atom
physics. For instance, alkali atoms like Rb and Na have
hyperfine spin F ¼ 1, and a K atom has F ¼ 9=2, a
lanthanide atom such as Dy has J ¼ 8, and alkali-earth-
(like) atoms such as Yb and Sr have a large nuclear spin
with SUðWÞ symmetry, where W can be as large as ∼10.
Recently, an interesting idea has emerged to use the internal
spin degrees of freedom as another dimension, named as
the “synthetic dimension,” which naturally extends a
D-dimensional system into a (Dþ 1)-dimensional one
[1,2]. In a 1D lattice system, by applying two counter-
propagating Raman beams to couple different spin states,
one can create a magnetic flux lattice in synthetic 2D
geometry [2]. This proposal requires a minimum amount of
laser light and therefore minimizes heating from sponta-
neous emission. It also gives rise to a sharp edge in the
synthetic dimension, which can help to visualize edge
states. Very recently, two experimental groups have imple-
mented this scheme, in a Rb atom [3] and in a Yb atom [4],
respectively, and chiral edge states have been observed, for
noninteracting (or weakly interacting) bosons [3] and
fermions [4], respectively. Moreover, it is also possible
to create more exotic nontrivial geometries [5].
The experimental setup and basic idea of the synthetic

dimension are briefly illustrated in Fig. 1. For instance, two
Raman beams with π and σ polarizations couple spin state
jmi to jm� 1i, where m can take any value between −F
and F with a total ofW ¼ 2F þ 1 components. The Raman
coupling has a spatial dependent phase factor ei2kRx, where
kR is the recoil momentum of Raman laser. Here we
introduce γ as γ ¼ 2kRa ¼ 2π=q (a is lattice spacing),
and the single particle Hamiltonian is therefore written as

Ĥ0 ¼
X

j;m

ð−tĉ†jþ1;mĉj;m þ Ωe−iγjĉ†j;m−1ĉj;m þ H:c:Þ; ð1Þ

where j labels the site along the physical dimension x̂
and m labels internal spin components. t is the hopping
amplitude along x̂ and Ω is the Raman coupling strength.
There are two different but equivalent views of this single-
particle Hamiltonian.
(a) A 1D system of high spin atoms with spin-orbit

coupling: by applying a spin and site dependent rotation
ĉj;m → eiγjmĉj;m, the Hamiltonian Eq. (1) becomes

Ĥ0 ¼
X

j;m

ð−te−iγmĉ†jþ1;mĉj;m þ Ωĉ†j;m−1ĉj;m þ H:c:Þ ð2Þ

The spin dependent hopping term, together with a constant
spin flipping term, gives rise to the spin-orbit coupling
effect, which has been extensively discussed in the con-
tinuum case in the past few years [6–10].

(a)

(b)

Charge
Pumping

FIG. 1 (color online). Illustration of two different physical
pictures of this system and the idea of charge pumping. (a) Two
Raman beams along x̂ are applied to a multicomponent quantum
gas in optical lattices. The Raman beams couple different spin
states and generate a coupling between spin and momentum kx.
(b) Different spin components are viewed as another dimension,
and the system is mapped into a 2D spinless particle in a magnetic
field. By applying an electric field along the physical dimension
x̂, it generates a charge pumping along the synthetic dimension,
which can be detected by measuring spin populations.
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(b) A 2D system with magnetic flux: If we view m as
another synthetic dimension, say, labeled by ŷ, Eq. (1)
represents a situation that spinless atoms hop in a 2D space,
with a finite number (W) of chains and an open boundary
condition along ŷ. More importantly, hopping along a close
loop around a plaquette accumulates a phase of γ, that is
equivalent to say, each plaquette has a flux of Φ0=q (Φ0 is
magnetic flux unit).
These two equivalent views build up an intriguing

connection between spin-orbit coupled high spin particles
in 1D and spinless but charged particles in a 2D ladder
geometry with magnetic flux. For instance, at the single-
particle level, the chiral edge current from scenario (b), as
observed in Refs. [3,4], is equivalent to the spin-momentum
locking effect from scenario (a), as observed in the spin-
1=2 case [6–8]. In this Letter we aim at studying the effect
of repulsive interaction in this system [11]. For 2D electron
gas in a magnetic field, it is known that the fractional
quantum Hall (FQH) state will emerge with strong repul-
sive interactions. However, in this system there are a few
important differences that are worth emphasizing first.
(1) In the synthetic dimension, the system always only

has a finite number of chains. Though it is possible to create
a periodic boundary condition in the synthetic dimension
with a certain complicated laser setting, in the most simple
and natural setup, the system has an open boundary
condition in the synthetic dimension. Thus, the finite size
effect can be significant.
(2) Along the physical dimension, the interaction is on

site and short-ranged. While in the synthetic dimension, the
interaction is long-ranged. Let us consider a SUðWÞ
invariant interaction [12],

Ĥint ¼ U
X

j;m≠m0
n̂j;mn̂j;m0 ; ð3Þ

atoms in any two sites along the synthetic dimension,
despite of their separation, interact with the same inter-
action strength. In another words, in the 2D lattice the
interaction is very anisotropic.
(3) For a normal FQH effect, the only relevant parameter

ν is the ratio between fermion number to flux number. In
our case, it will be

ν ¼ N
Nflux

¼ N
WL=q

¼ Nq
WL

; ð4Þ

where N is the total number of fermions, L is the number of
sites along the x̂ direction. However, from the picture
(a) that our system is one dimensional, it is natural to
introduce another filling factor,

ν1D ¼ N
L
; ð5Þ

and if ν1D is an integer, one may expect a trivial Mott
insulator rather than a FQH state when interaction U is

sufficiently large. Thus, when ν is fixed, we still have two
other tunable parameters, i.e., ν1D and W.
Hereafter we shall fix ν ¼ 1=3 as a typical example.

Given the differences mentioned above, one may wonder
whether one will still have a FQH-type behavior under
strong repulsive interactions. Besides, whether there is an
effective scheme to detect such a state in this cold atom
setting. The rest of this Letter is devoted to answering this
question.
Charge pumping.—To reveal the interaction effect, we

propose to perform a charge pumping experiment utilizing
the advantage of the synthetic dimension. Let us consider
applying an electric field along the x̂ direction. In a cold
atom experiment, this can be realized by a moving lattice
with a constant velocity v or by applying a field gradient for
a short period of time to shift momentum by θ=L. For a
moving lattice, in the comoving frame a constant vector
potential mv appears as required in charge pumping argu-
ment [13], which also corresponds to a periodic boundary
condition with θ ¼ mvL. In our numerical calculation
below, this is implemented by a twisted boundary condition
in the x̂ direction, i.e., ΨðLÞ ¼ eiθΨð0Þ. Charge pumping
here means charge transfer along the synthetic dimension
[13], as schematized in Fig. 1. Defining the “charge
polarization per unit length” as

Y ¼ 1

W

X

j;m

hn̂j;mim; ð6Þ

the charge transfer along the synthetic dimension after
inserting one flux is given by

Q ¼ Yðθ ¼ 2πÞ − Yðθ ¼ 0Þ: ð7Þ

Following discussions in the previous literature [14], this
value is quantized in the limit of large W for a topological
band [15]. If it is in real space, detecting charge transfer
requires an in situ image, while charge transfer in the
synthetic dimension means the changing of the spin
population, which can be easily detected from the Stern-
Gerlach experiment in the time-of-flight image [16,17].
In Fig. 2, we present the charge pumping value Q for

various ν1D and W, with ν fixed at 1=3. This result is
obtained by numerically solving the many-body wave
functions with Hamiltonian Ĥ ¼ Ĥ0 þ Ĥint, either by exact
diagonalization (ED) or density matrix renormalization
group (DMRG) methods. For ED the maximum number
of particles is six and the dimension of Hilbert space is of
the order of 3 × 107. For DMRG, the maximum number
of particles is ten, and the truncation error is of the order of
10−7. Each eigenstate has a well-defined quantum number
K that is the center-of-mass momentum along x̂. We also
plot how these eigenstates evolve under the changing of θ,
as shown in Fig. 3, and for the ground state, we calculate Y
as a function of θ with Eq. (6) and deduce Q with Eq. (7).
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We find the following features in Fig. 2. (i) For ν1D ¼ 1,
Q is identically zero for allW. In this case there is always a
unique ground state which will not interchange with other
states under flux insertion, as shown in Fig. 3(a). This is a
Mott insulator phase with commensurate ν1D. (ii) Since
here we consider q as an integer, the smallest value for q is
q ¼ 2. With q ¼ 2 and ν ¼ 1=3, ν1D ¼ νW=q can at most
be W=6. We note that for q ¼ 2, the Hofstadter spectrum
exhibits a Dirac cone instead of a fully gapped band, and
the lowest band does not have a well-defined Chern-
number. Therefore, for ν1D ¼ W=6 (with W ≤ 6) we also
find Q ¼ 0. A typical spectral flow and charge pumping is
shown in Fig. 3(b). (iii) For smallW, or for largerW but ν1D
closer to unity, though Q is generally nonzero, it takes a
nonuniversal value. This fluctuating Q indicates some
Fermi-liquid type states [18]. (iv) For large W and small
ν1D, Q gradually approaches a universal fractional value of
1=3. A typical spectral flow under flux insertion is shown in
Fig. 3(c). One can see that three low-lying states (though
not exactly degenerate) exchange one with the other as θ
increases, and the spectrum recovers itself only after θ
changes 6π. These features are consistent with a FQH
effect. This is because for large W, the finite size effect in
the synthetic dimension becomes insignificant, and for
smaller ν1D away from commensurate filling, the lattice
effect also becomes weaker. For intermediate W, the value
is not exactly 1=3 partially due to the finite size effect in the
definition of Y in Eq. (6). Previously, it has been shown by
the Luttinger liquid theory that for continuum models, a
fractional state can emerge in a one-dimensional system
with spin-orbit coupling [19].
We also study the charge pumping value Q as a function

of Raman coupling strength Ω, as shown in Fig. 4. As the
synthetic magnetic field results from Raman coupling, one
naturally expects that Q will vanish as Ω → 0. Indeed, we

show in Fig. 4 that whenΩ=t is smaller than a certain value,
Q starts to deviate from 1=3 and drops fast to zero. This
feature is particularly clear for large W (e.g., green points
forW ¼ 14 in Fig. 4). We have also looked atQ for smaller
U=t and found when U < t, Q also takes a fluctuating
nonuniversal value.
Periodic boundary conditions in the synthetic dimen-

sion.—We also find that if one applies a more involved laser
setting to achieve a periodic boundary condition along the
synthetic dimension, it will help to stabilize the topological
degeneracy of a fractional state. For instance, for the cases
withW ¼ 4 we presented in Fig. 2, we do not find accurate
fractional charge pumping. While when we apply a
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FIG. 2 (color online). Charge pumping for different ν1D andW.
The numbers in the boxes are charge pumpingQ after insertion of
one flux [15]. Blue triangles are points calculated by ED and red
circles are points calculated by DMRG, with ν fixed at 1=3,Ω ¼ t
and U ¼ 6t. (a)–(c) Three marked cases where spectral flow will
be shown in Fig. 3.
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FIG. 3 (color online). Left column: Spectral flow under the
insertion of flux (i.e., changing periodic boundary condition θ
from zero to 6π.) Right column: Charge polarization Y as a
function of θ. (a)–(c) correspond to different W and ν1D as
marked in Fig. 2. (a) W ¼ 9, ν1D ¼ 1 (N ¼ L ¼ 5), q ¼ 3;
(b) W ¼ 5, ν1D ¼ 5=6 (N ¼ 5, L ¼ 6), q ¼ 2, and (c) W ¼ 14,
ν1D ¼ 2=3 (N ¼ 4, L ¼ 6), q ¼ 7. All of these cases are
calculated by ED. U ¼ 6t and Ω ¼ t.
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FIG. 4 (color online). Charge pumping Q as a function
of Raman coupling strength Ω=t. The dashed line is 1=3. Here
U ¼ 6t and other parameters are shown in the legend.
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periodic boundary condition in the synthetic dimension, we
show the energy level for different momenta (labeled by
Ky þWKx as now both Kx and Ky are good quantum
numbers) in Fig. 5, and we find a very accurate threefold
degeneracy, with an energy splitting smaller than 10−4t,
and these states are separated from other excited states by a
gap ∼0.04t. The total momentums of these three states are
also consistent with generalized Pauli-exclusion principle
analysis [20]. Moreover, these states exchange one another
under the flux insertion, and do not intersect with other
excited states, as shown in Fig. 5(b). By calculating the
Berry curvature with twisted boundary conditions in both
physical and synthetic dimensions [18], we numerically
find that their many-body Chern numbers C1 ¼ C2 ¼
C3 ¼ 0.333.
Density order.—Finally we look at real-space charge

density order. We consider the on site total density
ρj ¼

P
mhn̂j;mi. In Fig. 6, we plot the Fourier transform

of ρi as ρðqxÞ ¼ ð1=LÞPjðρj − ρ̄Þeiqxj (ρ̄ ¼ ν1D is the
average density). ρðqxÞ shows a clear peak at qx=ð2πÞ ¼
ν1D and qx=ð2πÞ ¼ 1 − ν1D. This feature exists for both
open and periodic boundary conditions along the synthetic

dimension. A similar situation has also been found in
several other models [21]. This is reminiscent of the usual
FQH state in the thin torus limit [22].
Conclusion.—In summary, we have studied interaction

effects in the synthetic dimension picture of high spin
lattice Fermi gases with Raman-coupling induced spin-
orbit coupling. Our studies are mainly focused on the
charge pumping experiment, which becomes much easier
in this setting, as the charge pumping along the synthetic
dimension can be visualized by measuring the spin pop-
ulation. For the fixed ν ¼ 1=3 case, we investigate how the
charge pumping value depends on the number of spin
component W, fermion density ν1D, and Raman coupling
Ω=t. We conclude that a universal fractional charge
pumping Q ¼ 1=3 is favorable for W ≫ 1, ν1D ≪ 1,
Ω=t ∼ 1, and with strong interactions. We also remark that
the experimental imperfections, such as finite temperature
effect and particle density fluctuation, will all cause
derivation from this universal value. However, the quanti-
tative features shown in Fig. 2 are still robust. Nevertheless,
in order to observe the exact quantized value one has to
cool the system below the gap (∼0.04t) and use a flat-
bottom trap to precisely control density. Similar results
have also been obtained for strongly interacting bosons.
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Note added.—Recently, we become aware of another paper,
Ref. [23], in which the same system is studied by DMRG.
Charge density wave order is also discussed in this paper.
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