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We consider a method of high-fidelity, spatially resolved position measurement of ultracold atoms in an
optical lattice. We show that the atom-number distribution can be nondestructively determined at a spatial
resolution beyond the diffraction limit by tracking the progressive evolution of the many-body wave
function collapse into a Fock state. We predict that the Pauli exclusion principle accelerates the rate of wave
function collapse of fermions in comparison with bosons. A possible application of our principle of
surpassing the diffraction limit to other imaging systems is discussed.
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The classical theory of electromagnetism predicts that
two objects with a distance less than a wavelength cannot
be resolved [1]. This fundamental limit known as the
diffraction limit has long imposed insurmountable con-
straints on optical physics. Recent achievements of the
single-site resolved imaging [2,3] and addressing [4] of
ultracold lattice gases are not exceptions: the diffraction
limit requires a high numerical aperture lens and a large
number of signals which forces us to use a near-resonant
probe light which causes destruction of atomic states. As a
result, all the experiments on single-site-resolved detection
performed to date are destructive.
Quantum gases in an optical lattice offer an ideal play-

ground to investigate strongly correlated systems and quan-
tum information [5–7]. Recently, single-site resolved
detection and addressing have emerged as a powerful tool
for those studies [8–15]. Against such a backdrop, the
development of a nondestructive measurement at the sin-
gle-site level will have a significant impact on quantum
simulation [16,17], quantum information processing
[18,19], and open quantum many-body systems [20,21].
Furthermore, it will also be applied to the study of the
influence of measurement backaction on quantum many-
body states [22–26] and open up the possibility of general-
izing the concepts in quantum feedback control [27,28] and
quantum nondemolition (QND) measurement [29–31] to
quantum many-body systems. To move toward these goals,
there is an obvious need to develop methods which allow us
to overcome the difficulty posed by the diffraction limit.
In this Letter, we propose a method that achieves this

aim. We consider a quantum measurement of atomic
positions in an optical lattice by spatially-resolved detec-
tions of dispersively scattered photons. A photodetection
induces the many-body wave function collapse of atoms
because a lens aperture diffracts the scattered field and
imprints the spatial information of atoms on photons [32].
We show that the measurement backaction localizes the
atom-number distribution and that tracking the progressive

collapse into a Fock state enables us to perform diffraction-
unlimited position measurement with near-unit fidelity. The
main idea of our scheme of surpassing the diffraction limit
is as follows. Since quantum measurement theory auto-
matically takes into account Bayesian inference, we can
extract the unbiased positional information of atoms and,
remarkably, can precisely distinguish atomic configurations
even if the diffraction limit is larger than the lattice
constant. Previous works discussing nondestructive meth-
ods using off-resonant scattering with the angle-resolved
measurement [33–38] and with the use of a cavity [39,40]
could not achieve such a high spatial resolution.
Furthermore, we find that the Pauli exclusion principle
accelerates the rate of wave function collapse of fermions
compared with bosons and, thus, our scheme is particularly
suited for the recently realized single-site detection of
fermionic gases [41–43].
While we here focus on atoms, our scheme can also be

applied to other optical lattice systems such as single trapped
ions [44–46]. Further, since the Bayesian analysis of the
conditional probability distribution of source positions
allows us to surpass the diffraction limit, our formulation
may have an application to other imaging systems, e.g.,
photoactivated localization microscopy [47–52], as dis-
cussed later. We note that there also exist other approaches
of overcoming the diffraction limit such as subwavelength-
scale optical lattices using plasmons [53], photonic crystals
[54], and running waves [55]. Other examples include
stimulated emission depletion microscopy [56] and its
coherent extension to magnetic imaging [57].
Model.—We consider two-level atoms in a lattice

described by the many-body Hamiltonian

Ĥ ¼
Z

d3r½ĤaðrÞ þ ĤafðrÞ� þ Ĥf; ð1Þ

where ĤaðrÞ ¼
P

i¼g;eℏωiΨ̂
†
i ðrÞΨ̂iðrÞ is the Hamiltonian

of atoms and ℏωg;e are their ground (g) and excited (e) state
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energies, and Ψ̂g;eðrÞ are the corresponding field operators;
ĤafðrÞ ¼ −ðd · ÊðrÞΨ̂†

gðrÞΨ̂eðrÞ þ H:c:Þ describes the
electric-dipole interaction with d and ÊðrÞ being the
electric dipole moment and the electric field operator,
respectively; Ĥf ¼ P

k0;σℏωk0 â
†
k0;σâk0;σ is the free-field

Hamiltonian with âk0;σ being the annihilation operator of
a photon with wave vector k0 and polarization σ. Atoms are
illuminated by an off-resonant probe light whose positive

frequency component is EðþÞ
P ðrÞ ¼ ePE0eik·r=2. Each

scattered photon is diffracted through a lens aperture and
detected on a screen [see Fig. 1(a)]. We first focus on a 1D
lattice and then discuss the generalization to a 2D lattice. In
this Letter, we ignore tunneling of atoms through lattice
potentials during imaging and focus on light scattering.
The scattered field can be calculated [58] by integrating

out the Heisenberg equation of motion under the geom-
etry as shown in Fig. 1. After performing the adiabatic
elimination of the excited state and employing the tight-
binding approximation, we arrive at the following expres-
sion of the scattered field at position X on the screen:

ÊðþÞ
sca ðXÞ ¼ γ

X
m

e−iΔk·mdexF
�jxX −mdj

σ

�
b̂†mb̂m; ð2Þ

where the polarization vector is averaged out since we do
not consider measuring the polarization of a photon, Δk is
the wave-vector difference between incident and scattered
photons, the operator b̂m annihilates an atom at site m, xX
is the diagonal coordinate of the detected position [Fig. 1
(b)], and F ½y�≡ J1ðyÞ=y which vanishes rapidly for
y ≫ 1. Here we assume that atoms remain in the low-
est-band Wannier states during the imaging. This

assumption should be met by using, for example,
Raman sideband cooling [21,26,41,42], as discussed later.
We introduce the parameter σ characterizing the resolution
of the classical imaging method which is defined in terms
of the numerical aperture of the lens NA as σ ≡ 1=kNA.
The diffraction limit is usually characterized by the first
zero of the Airy disk, ddiff ¼ 0.61ðλ=NAÞ, which can be
related to σ as ddiff ¼ 3.8σ. Note that the classical imaging
method can achieve the single-site resolved measurement
only when the diffraction limit is comparable with the scale
of the lattice constant ddiff ≲ d.
Let us now consider the physical implication of Eq. (2).

The measured observable can be continuously varied as we
control the parameter σ by, for example, changing the
distance between a lens and a lattice. When the lens is
positioned at a far-field region and the numerical aperture is
so low that σ is much larger than the lattice constant, the
phase factor in Eq. (2) generates a Bragg diffraction pattern
rather than the space-resolved imaging [59].
We develop a continuous quantum measurement

theory and show that successive photodetections cause
progressive collapse of the atomic state into a Fock state
which, in turn, allows us to surpass the diffraction limit.
We first consider an ideal situation in which the collection
efficiency of scattered photons is unity and later discuss
the effect of uncollected photons. Since the effective
Hamiltonian commutes with the atom-number operator
at each lattice site, the ideal photodetection of a dispersive
scattered light constitutes a QND measurement of the
atom-number statistics in the sense of Ref. [60]. Hence,
our model presents a dual approach compared with a
QND measurement [29–31] of the photon number by two-
level atoms, where the photon number is determined by
detecting the state of an output atom.
For the sake of concreteness, let us consider N atoms

trapped in a 1D optical lattice with NL sites. The state of
a quantum gas is represented in terms of Fock states
jfnmgi≡ jn1;…; nNL

i satisfying
PNL

m¼1 nm ¼ N. Let ρ0
be the density matrix for the initial motional state of atoms
and P0½fnmg� be the corresponding initial atom-number
distribution. When we detect a photon at the screen position
X, the change of the conditional state can be described

by the measurement operator [Eq. (2)] as ρ0 → ÊðþÞ
sca ðXÞρ0

Ê†ðþÞ
sca ðXÞ=Tr½ÊðþÞ

sca ðXÞρ0Ê†ðþÞ
sca ðXÞ�.

Suppose now that n photons were detected at the
positions X≡ fX1;…; Xng. Then the atom-number dis-
tribution of the quantum state becomes

Pn½fnmgjX� ¼ P0½fnmg�
Q

n
k¼1 P½Xkjfnmg�P

fn0mgP0½fn0mg�
Q

n
k¼1 P½Xkjfn0mg�

: ð3Þ

Here P½Xjfnmg� is the conditional probability of detecting a
photon at X, given that the atomic state is the Fock state
jfnmgi:

FIG. 1 (color online). Schematic geometry of our system.
(a) Atoms trapped in an optical lattice are illuminated by an
off-resonant probe light with wave vector k. A scattered light is
diffracted through a lens and detected on the screen. The position
of a detected photon is denoted by R. (b) A measurement
backaction caused by the detection of a photon at position X. The
many-body wave function shrinks according to the function F
which peaks at xX , where xX is the lattice point diametrically
opposite to X with respect to the center of the lens aperture.
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P½Xjfnmg� ¼
jPNL

m¼1 nmF ½jxX−mdj
σ �j2R

dX0jPNL
m¼1 nmF ½jxX0−mdj

σ �j2
; ð4Þ

where we neglect the contribution from the phase factor
[58] in Eq. (2). We can track the progressive dynamics of
the wave function collapse by applying Eq. (3) iteratively.
The detection of a sufficiently large number of photons
causes the state to collapse into a Fock state jfnmgi and,
hence, the occupied atom number at each lattice will be
precisely determined. Note that the order of the measure-
ment outcomes is irrelevant to the final collapsed state
because all measurement operators commute with each
other and only the accumulated histogram of the positional
information of photodetections is sufficient to determine
the final atom-number distribution. Nevertheless, tracking
the progressive collapse in real time allows an adaptive
measurement to terminate an imaging process once the
required confidence level is attained so that unfavorable
effects such as heating are kept minimal.
Let us here discuss why our method can surpass the

diffraction limit. The crucial point is that since Eq. (3)
derived from the quantum measurement theory automati-
cally takes into account Bayesian inference, we can extract
the detailed unbiased information about the positions of
point sources. While the atomic configuration can also be
inferred to some extent from an ordinary fitting procedure
with a sufficiently large number of photodetections, our
scheme achieves much better accuracy as detailed later.
Numerical simulations.—To illustrate the principle of

surpassing the diffraction limit, we perform numerical
simulations of our model. Figures 2(a) and 2(b), respec-
tively, show the collapse of a bosonic state and that of a
fermonic state into Fock states, where the initial state is
chosen as a superposition of all possible Fock states. For
comparison, we also show the histograms of detected
positions of photons [Figs. 2(c) and 2(d)]. Our method
enables us to distinguish between different Fock states by
tracking the wave function collapse and hence, we can
determine the atom number at each lattice site with near-
unit fidelity beyond the conventional parity measurement.
(For possible collision-induced loss, see the discussion
below.) On the other hand, the classical diffraction-limited
images [Figs. 2(c) and 2(d)] cannot resolve atoms placed at
neighboring sites. The distribution of the collapsed states
obtained by many realizations reproduces the initial state
distribution.
To show the high fidelity of our scheme, we plot the

confidence level of identifying the collapsed Fock state
against the number of photodetections [Fig. 3(a)]. As shown,
our scheme achieves a faster convergence to near unit fidelity
than an ordinary fitting procedure. In particular, we find
about an order of magnitude reduction in the required
number of photodetections at 99.5% fidelity, which is the
confidence level reported in Ref. [3]. We note that the regular
analysis here based on the least squares fit also utilizes the

same knowledge about the discrete positions in the lat-
tice [61].
To investigate how quantum statistics of atoms affects

the evolution of the wave function collapse, we plot the rate
of wave function collapse against the resolution parameter
σ [Fig. 3(b)]. We find that the rate of convergence is faster
for fermions than bosons. This can be attributed to the Pauli
exclusion principle which greatly reduces the number of

FIG. 2 (color online). Wave function collapse of atoms into
Fock states [(a),(b)] and the diffraction-limited imaging signals
[(c),(d)]. [(a),(b)] Successive detections of photons induce the
state reduction of (a) bosons and that of (b) fermions into Fock
states, with NL ¼ 5, N ¼ 2, σ ¼ 1.0 (in units of d). The atom
number at each site is determined with near-unit fidelity by
tracking the wave function collapse. [(c),(d)] The associated
histograms of photodetection positions for (c) bosons and
(d) fermions, respectively. Signals from atoms placed at different
sites are substantially blurred by diffractions.

FIG. 3 (color online). Fidelity F and the required number of
photodetections Np for 95% fidelity. (a) The fidelity of our
scheme (blue) compared with the result of the least-square fitting
(yellow) for bosons at σ ¼ 1.0. Dashed lines indicate 95% and
99.5% confidence level. (b) The number of photodetections
required to achieve 95% fidelity (log-scale) plotted against the
resolution σ for bosons (blue) and fermions (red), calculated for
104 realizations with NL ¼ 5 and N ¼ 2.
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possible configurations for fermions. Hence, our method is
particularly suited for the single-site resolved detections of
fermionic gases [41–43]. Another interesting feature is that
the average number of photodetections needed to cause the
many-body wave function collapse grows almost exponen-
tially with the resolution parameter σ in a large-σ region.
Because the rate of convergence can be related to the
relative entropy of each measurement [62], this finding
should have some information-theoretic background.
Asymptotic formula of the fidelity.—To explicitly show

the efficiency of our scheme, here we discuss an analytical
treatment of the confidence level. The fidelity F of
identifying the collapsed Fock state can be asymptotically
approximated by the following equation [62]:

F ¼ 1 −
X
fnmg

P0½fnmg�e−NpR½fnmg�; ð5Þ

where Np is the total number of photodetections and
R½fnmg� is the minimal information-theoretic distance of
the Fock state fnmg:

R½fnmg�≡ min
fnkg≠fnmg

D½P½Xjfnmg�jP½Xjfnkg��: ð6Þ

HereD½P1jP2� denotes the relative entropy between the two
probability distributions P1 and P2. Equation (5) has the
following physical meaning: the more distinguishable the
interference patterns generated by different Fock states are,
the faster the convergence to unit-fidelity is. From Eq. (5),
one can calculate the expected fidelity for an arbitrary
number of atoms and lattice sites. A scaling analysis of
the error rate ϵ≡ 1 − F implies that the fidelity scales
mainly with the number of detections per atom (per lattice
site) for fermions (bosons) [61].
As inferred from Eq. (5), an order-of-magnitude reduc-

tion of Np [Fig. 3(a)] allows exponential improvement of
the precision; i.e., the error rate of finding a particular Fock
state becomes exponentially small. This is a particularly
advantageous feature of the discretized space compared
with the continuous space in which case only the square-
root improvement of the precision is expected.
Experimental situations.—Let us make some practical

considerations on the experimental implementation. First,
we note that, in practice, only a portion of scattered photons
can be collected and the back-action caused by destructions
of uncollected photons in the far-field region also affects
the dynamics of the wave function collapse [24,63]. In this
case, Eq. (3) does not reconstruct an exact progressive
dynamics of the wave function collapse. Nevertheless, the
actual final collapsed Fock state, which is of primary
interest, coincides with the one identified from Eq. (3)
after a sufficient number of photodetections. As we pointed
out earlier, the order of photodetection does not matter for
the eventual collapsed wave function; this implies that the
presence of uncollected photons only delays the speed of

the collapse but not alter the eventual atomic state. Hence,
our method can determine the atom distribution even in the
presence of uncollected photons. In this respect, our
formulation based on the Bayesian update of the condi-
tional probability distribution of source positions may have
an application to superresolved imaging of classical objects
such as photoactivated localization microscopy [47–52].
Second, we note that our scheme can, in principle, be

performed without prior knowledge of the total atom
number [64,65]. This is because the relative entropy
D½Pmeas½X�jP½Xjfnmg�� between the measured photon-
number distribution and the distribution from the collapsed
Fock state provides a way of hypothesis testing of the atom
number [61].
Third, we estimate a possible heating and show appro-

priate experimental parameters for our scheme. To this end,
we consider the setup of Ref. [3]: d ¼ 532 nm, λ ¼ 780 nm
and NA ¼ 0.68 (leading to σ ¼ 0.343). Combining our
numerical results of the required number of detections
(about 5 detections per atom at σ ¼ 0.343) with the
experimental collection efficiency ∼10%, we obtain the
total recoil energy as ∼93Er where Er ≡ ℏ2π2=2md2.
Hence, the contribution of heating effects would be made
negligible by, for example, implementing Raman sideband
cooling as recently performed in Refs. [41,42]. To estimate
the imaging time T img, we consider theD2 transition of 87Rb
[3] and the detuning Δ ¼ 100Γ, where Γ=2π ¼ 6.07 MHz
is the decay rate. From the required number of photo-
detections combined with the collection efficiency men-
tioned above, we obtain T img ∼ 9.6 ms.
As for a possible loss of bosons due to light-assisted

inelastic collisions, we note that usage of an off-resonant
blue-detuned light can suppress such radiative losses [66].
To quantify the argument, we evaluate the inelastic scatter-
ing rate based on the Landau-Zener transition probability
[66]. From the above experimental parameters combined
with ωtrap=2π ¼ 20 kHz for the harmonic trapping fre-
quency of the optical lattice, we obtain 6 × 10−3 Hz as the
inelastic collision rate per atom and hence, radiative losses
can indeed be neglected in our consideration. We note that
the Doppler heating effect can also be neglected because we
consider large detuning. The crucial point is that, our
method allows us to distinguish different Fock states with
much less photons and thus without substantial heating
which, in turn, allows the usage of a blue-detuned light.
This contrasts with the conventional methods [2,3], which
require use of a near-resonant red-detuned light to simulta-
neously achieve a high scattering rate and cooling atoms.
Finally, while reconstructing the collapse dynamics of a

mesoscale number of atoms (typical in quantum gas
microscope experiments [11–15]) is already within the
scope of our model, one may need to reconstruct a
macroscopic number of atoms, which, in practice, seems
to be beyond the scope of our theory due to an exponential
growth of computational cost. We note, however, that if the
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final collapsed Fock state is of primary interest, one can
avoid such problems by neglecting an intermediate process
of the collapse [52].
Conclusion.—We have demonstrated that tracking the

progressive evolution of the wave function collapse of a
quantum many-body state provides a way to surpass the
classical resolution limit, which—in contrast to the conven-
tional diffraction-limited parity measurement—enables a
nondestructive measurement of the atom-number distribu-
tion at the single-site level. Moreover, our principle of
surpassing the diffraction limit has a much broader range of
applications other than an optical lattice system and gives a
powerful means of extracting positional information in
different varieties of challenging situations.
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