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Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense
microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the
question of whether macroscopic waves can report back the presence and distribution of microscopic
scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In
our analysis, monosized hard scatterers 5 μm in radius are immersed in lossless gelatin phantoms to
investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength.
Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling
quantification of the phase velocity at a voxel size big enough to contain thousands of individual
scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations
that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the
macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that
is comparable to the probing wavelength. Since apparent fractality is naturally present in any random
medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law
exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure
that exhibits intrinsic fractality, such as, for instance, vasculature.
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Introduction.—Wave scattering has been shown to pro-
vide profound insight into the structure and dynamics of
matter in the context of light [1–3], acoustics [4,5],
geophysics [6], and particle scattering [7]. Various models
of wave propagation have been developed in disordered
media to describe the interaction between waves and
scatterers present in the medium. Thereby, the underlying
microstructure can be related to macroscopically observ-
able wave characteristics. In the case of weakly fluctuating
random media and thin sample dimensions, it is typically
assumed that the wave interacts only once with the
scatterers, leading to the Born approximation. In optics,
this approach has been used to characterize the underlying
spatial fractality in the refractive index of thin tissue
samples [1]. As the number of scattering events increases,
the single scattering approximation becomes invalid and
higher orders of the Born expansion have to be used to take
multiple scattering into account [8].
Recent advances in magnetic resonance imaging enable

the direct visualization of monochromatic steady-state

elastic waves in 3D [9]. Thereby, wave propagation
processes and in particular multiple scattering effects in
complex media can be observed in situ at subwavelength
image resolution. This allows pixelwise quantification of
phase velocity and dispersion properties [10]. Here, we try
to answer the following fundamental question: Do the
dispersion characteristics of multiple scattered waves allow
us to uncover the presence and distribution properties of
microscopic scatterers despite several orders of magnitude
difference in scale between the wavelength and scatterer
size? Thus, we are investigating the situation where the
wavelength λ (∼3mm) is much larger than the average
geometrical distance between scatterers (∼30 μm)—hence,
multiple scattering is taking place—and phase correlations
do not vanish as the transport length l� is much larger than
the sample size [11]. This condition is characteristic for
shear-wave to shear-wave scattering in the Rayleigh regime
as the differential cross section is forward/backward and
sideways collimated [12] and the scattering mean free
path l ¼ ðnσÞ−1 is large (∼104 m) due to a small total
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shear-wave cross section σs ¼ ðπa2ÞðksaÞ4, with ks the
shear-wave vector, a the scatterer radius, and n the number
density [13]. This precludes also any localization effects as
ksl ≫ 1. Finally, imaging is done at spatial scales δ that
allow local quantification of wave properties, but data
acquisition cannot resolve spatially or temporally individ-
ual scattering events, i.e., l� > l ≫ λ > δ ≫ a.
The quest for extracting microstructural information

from multiple scattering events is not new. In the field of
geophysics, for instance, approaches such as “virtual
source imaging” and “passive imaging” have been suc-
cessfully developed for extracting the Green’s function
[14–16]. Here, imaging is made possible by the stochastic
self-focusing of multiple scattered waves by subwave-
length scatterers, which is the point in common with the
present study. However, those methods utilize broadband
signals that are not provided given our experimental
situation.
The large difference between wavelength and scatterer

radius, the small cross section, and the collimated forward/
backward scattering of shear-wave to shear-waves places
our problem in the domain of the O’Doherty-Anstey
(ODA) theory [6]. This theory explains the transmission
properties of a wavelet through a medium of finely
stratified layers in 1D [17–19]. In the ODA theory, the
superposition of multiple reflections leads to a propagating
wavelet that consists of coherently superimposed multiple
scattering events. While multiple scattering effects have
already been studied successfully with ultrasound, those
studies were done with wavelengths of a similar order as
the scatterer radius (λ=a ¼ 0.47=0.4 mm) [20,21]. The
novelty of our analysis lies in the fact that we utilize the
in situ dispersion properties of the shear-wave speed.
Theory of wave propagation in a multiple reflecting

medium.—The ODA theory is valid under the assumption
of small reflection coefficients and that space and time are
interchangeable, i.e., a constant wave speed for the back-
ground material. The ODA model is rooted in the charac-
terization of the scatterer distribution via its autocorrelation
function, typically denoted as the “lag-time distribution”
pðtÞ describing the spatiotemporal distribution of scatter-
ers. The lag-time distribution amounts to counting the
number of occurrences of a given clearing distance between
scatterers. The main result of the ODA theory is that the
final transmitted pulse spectrum is expressed by
TðωÞ ∝ eMðωÞ, where MðωÞ is the one-sided discrete
Fourier transform of the lag-time distribution. Here, we
will use its continuous formulation as presented in
Ref. [17]. Unlike typical ODA analyses that are mainly
interested in the effect of beam attenuation, we consider
here explicitly the propagative part of the ODA theory. The
experimental data yield for each voxel the phase velocity
cp, which is related to the real part β of the complex wave
vector k ¼ β − iα via β ¼ ω=cp. We can thereby relate the
macroscopically observable propagative part β of the wave

to the resulting microscopic phase change calculated via the
ODA theory through

e−ikx ∝ eMðωÞ ¼ eFðpðtÞÞ

⇒ β ∝
1

x

Z
∞

0

pðrÞ sin
�
r
x

�
dr

∝ ω

Z
∞

0

pðtÞ sinðωtÞdt ð1Þ

if we set the travel distance x to be a fraction of the
wavelength within the lossless background material (F
stands for the Fourier transform).
Medium characterization via lag-time distribution.—

The lag-time distribution can be derived in general from
the pair-correlation function pðrÞ studied by Teixeira [7]. It
counts the number of occurrences of a given clearing
distance between scatterers. As shown by Hamburger et al.
[22], any random distribution of particles exhibits sampling
fluctuations at short distances below a characteristic length
ζf. Therefore, the particle distribution NðrÞ shows apparent
fractality below ζf, i.e., NðrÞ ∝ rdf , and Euclidean behav-
ior above ζf, i.e., NðrÞ ∝ rD. Here, df stands for an
apparent fractal dimension of the medium and D is the
integer spatial dimension [see Fig. 1(a)]. The combination
of the concepts from Teixeira and Hamburger et al. leads to
a pair-correlation function pðrÞ ∝ rdf−D in the fractal
domain and to a constant probability in the Euclidean
region (df ¼ D). The definition of the scatterer statistics
has been studied in detail in Ref. [23]. Effectively, we are
facing two cutoff values: a lower cutoff defined by the
scatterer radius (representing a lag time of length zero) and
an upper cutoff defined by ζf. The limited distance between
those cutoffs in our case does not allow defining a rigorous
fractal dimension, but rather an effective dimension to
characterize the presence of non-Euclidean statistics. ζf
evolves with density according to a pure geometric argu-
ment, namely ζf ∝ ρ−1=D, and scales linearly with scatterer
radius a for a constant density; i.e., overall we find ζf ∝
aρ−1=D (neglecting the finite bead radius) [22].
The effect of the upper physical cutoff is handled via the

introduction of exponential weighting functions [7]. Thus,
the lag-time distribution ptot is expressed as a sum of two
contributions: a fractal-like component that decays expo-
nentially with t=τf, and a nonfractal component that rises
exponentially with t=τf (τf ¼ ζf=c0, where c0 is the wave
speed in the background material). The nonfractal compo-
nent is eventually suppressed with the aid of the parameter
τc ≫ τf to avoid infinitely long lag times that are not
physical [7]. The presence of those cutoffs leads ultimately
to the presence or absence of scattering induced dispersion
depending on the ratio of the wavelength to ζf.
Figure 1(b) confirms the validity of this approach using

2D simulations of randomly distributed particles with
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radius a ¼ 5 μm at low density ρ ¼ 5%. We will therefore
define

ptotðtÞ ¼ tdf−De−ðt=τfÞ þ t0ð1 − e−ðt=τfÞÞe−ðt=τcÞ: ð2Þ

Multiple reflections induce power-law dispersion in
fractal-like media.—Equation (1) in combination with
Eq. (2) leads to a description of wave propagation for the
multiple scattered part of the beam by using Eqs. 3.944-5
and 3.893-1 from Ref. [24]

βscattered ∝ωτdf−Dþ1
f Γðdf−Dþ1Þ ½1þðωτfÞ2�½ðD−df−1Þ=2�

×sinððdf−Dþ1Þtan−1ðωτfÞÞ

þ ωτ2c
1þðωτcÞ2

− ωτ2M
1þðωτMÞ2

; ð3Þ

where τM ¼ ½ðτcτfÞ=ðτc þ τfÞ� ≅ τf. When operating
at sufficiently high frequencies such that ωτf ≫ 1,
we obtain

βscattered ∝ Γðdf −Dþ 1Þ ωD−df sin
�
π

2
ðdf −Dþ 1Þ

�
:

ð4Þ

Overall, the total propagation is modeled as a weighted
sum of the direct beam and the scattered beam, i.e.,

βtotal ¼ εωþ βscattered ð5Þ

with unknown weight ε. This result demonstrates two
things: the presence or absence of dispersion depending
on whether the scatterer distribution is fractal-like (i.e.,
df ≠ D) or Euclidean (i.e., df ¼ D), and that the frequency

dependence of the dispersion is governed by a power law
[normalization factors have been omitted in Eqs. (3)
and (4)].
The high frequency approximation of Eq. (4) probes

solely the fractal-like contribution since the wavelength is
sufficiently small compared to ζf. At the other end of the
spectrum, where the wavelength is much larger than the
characteristic length of the fractal region (i.e., ωτf ≪ 1, but
still ωτc ≫ 1), one does not find any anomalous frequency
dependence for the reflected part as the first term in Eq. (3)
approaches zero. The remaining quadratic dependence on
ðωτMÞ2 is negligible compared to the direct beam, which
propagates according to β ∝ ω. Hence, in that case the
frequency dependence is governed by the direct beam and
we formally return to a frequency-independent phase
velocity because cpðωÞ ¼ ω=βðωÞ ¼ const. The original
ODA theory utilizes the properties of the lag-time distri-
bution at t ¼ 0 for estimating ε [Eq. (5)]. Here, that
approach is not feasible due to a singular behavior of
ptotðtÞ for t → 0 and ε must therefore be determined from a
fit to the data.
Comparison between the predictions of Eq. (5) and

experiments requires the following additional theoretical
considerations.
(1) The ODA theory has been developed in 1D. Here,

scattering can occur only in one direction. A 3D volume—
characterized by its radius ζf—represents a domain pro-
viding more possibilities for scattering than a 1D structure
with a length equal to 2ζf. It is therefore necessary to scale
the results found for the correlation length ζf in 2D or 3D to
an equivalent effective length in 1D for the ODA theory.
Here, we follow a heuristic approach which is motivated
by geometry: we determine the number of equivalent 1D
models that fit into the area or volume delimited by ζ2D=3D

f .
Intrinsically, a 1D model has no area or volume. We
therefore use the bead size a as the only scale available
and attribute to the 1D model the apparent area ð2ζ2Df Þð2aÞ

FIG. 1 (color). Characterization of lag-time distribution (2). (a) From particle to lag-time distribution and (b) verification via
simulation.
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for the 2D case. The ratio of these two areas, i.e. the area
that is characterized by apparent fractal statistics πðζ2Df Þ2
and the apparent area ð2ζ2Df Þð2aÞ represents the scale factor
by which ζ2Df needs to be augmented to represent the
corresponding effective length ζ1Df . Hence, we find ζ1Df ¼
ζ2Df ½πðζ2Df Þ2=ð2ζ2Df Þð2aÞ� ¼ ζ2Df ðπ=4Þðζ2Df =aÞ ∝ aρ−ð2=DÞ.
In our case we obtain ζ1Df ≈ 8000 μm, which is comparable
to wavelengths at the millimeter scale and can therefore be
probed by our experiments.
(2) The apparent fractal dimension df evolves with the

scatterer density [23]. Our theoretical prediction for dfðρÞ
[25] is in very good agreement with results obtained from
2D simulations and from confocal microscopy images
taken from the experimental scatterer samples, both ana-
lyzed with a box-counting method for fractal analysis [26]
[see Fig. 2(a)].
(3) A power-law equation is fit to Eq. (5) according to

cp ¼ ω=βtotal ∝ ωy. This provides an effective apparent
power-law exponent, where y is the exponent of the phase
velocity [Fig. 2(b)].
Experiments.—The Magnetic Resonance Elastography

(MRE) measurement technique leads inherently to an
averaging process over several hundreds of wave oscilla-
tion periods. Thus, any temporal fluctuations of the field
due to multiple scattering events are averaged out and
only the mean field remains. The deviations from the
mean field are principally the backscattered reflections,
which have a zero temporal expectation value [17].
Extraction of the shear-wave phase velocity is explained
in Ref. [10]. We use an agarose gel at a concentration
that yields quasilossless behavior for shear waves over
the investigated frequency range [27]. Apparent losses
due to wave scattering are generated via the addition of
colloidal suspensions of polystyrene microspheres with
known radius (a ¼ 5 μm and a ¼ 15 μm) and concentra-
tions (1%–20% volume fraction) prior to gel solidification
[25]. The resulting shear modulus of the gel leads to a

shear wavelength of about 3 mm for frequencies in the
600–1000 Hz range, yielding βa ≈ 0.01.
Phase coherence can be observed throughout the entire

sample, justifying the use of phase information for the
ODA theory [Fig. 2(b)]. Individual scattering events are not
resolvable as the average mean distance between scatterers
is ∼30 μm at a 5% microsphere density and an imaging
resolution set to 300 × 300 × 400 μm3. This particular
pixel size was chosen to optimize on the one hand the
sensitivity of the MRE method for providing reliable phase
velocity data [28,29], and on the other hand to reach a
statistical effect of the microsphere distribution at the scale
of the voxel (540–10 800 spheres per voxel). Mean phase
velocity values obtained from each sample are fit to a
frequency power law.
Results.—Experimental data confirm that the gel is

nondispersive in the absence of any microspheres, i.e.,
y ¼ 0 [Fig. 3(a)]. The addition of microspheres at various
concentrations leads to changes in the magnitude for cp of
not more than ∼25% and to an increase of the slope y; i.e.,
the material become dispersive. Figure 3(b) shows the
evolution of y with microsphere density: starting at zero for
ρ ¼ 0, it reaches a maximum at densities of around 7% and
returns back to zero with a further increase of the scatterer
density. This is expected for large densities due to a
shrinking characteristic length scale ζf and an effective
fractal dimension that approaches the upper limit, i.e.,
df → D. The theoretical model stemming from Eq. (3)
describes this evolution closely. The fit to the data yields a
ratio between the scattered beam and the direct beam of
about 10, which demonstrates that multiple scattering
dominates. According to the theory, a further increase in
the scatterer radius to a ¼ 15 μm does not change the
dispersion properties, as experimentally confirmed for
ρ ¼ 5%. Additional experiments were performed using
polysaccharides as scatterers with an average diameter
distribution of 2.3 � 1.4 μm. Experimental data confirm
the expected reduction in the apparent dispersion and lie

FIG. 2 (color). Characterization of gel samples and concept of shear-wave dispersion experiment. (a). Density dependence of fractal
dimension. The inset shows a confocal microscopy image of a gel sample. (b) Phase of the main shear-wave displacement component
and corresponding displacement in the through-slice direction as measured via MRE within a single slice of the gel sample. The
wavelength λ (∼3 mm) is comparable to the effective correlation length ζ1Df whereby apparent fractality can be probed. The third image
shows the derived phase velocity cp from which mean values of cp are calculated (yellow circle). Note, that cp is nearly constant as
expected for a sample that appears homogeneous at the macroscopic imaging scale. Mean values of cp acquired at different vibration
frequencies represent the basis for the subsequent analysis exploring the exponent of the frequency power law (4th image).
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approximately between the theoretical predictions for a 2
and 4 μm bead diameter. Additionally, finite element
simulations using the classical viscoelastic wave equation
were performed. Good agreement between the simulations,
experiment, and theory was found. Simulations could not
be extended beyond a 10% density due to convergence
issues for the finite element solver.
Discussion and conclusions.—To infer microstructural

heterogeneity from macroscopic dispersion, it is vital to
construct a concrete underlying theory. In our work, we
derive the presence of a dispersion power law from two
conditions: first, apparent fractality of the scatterer distri-
bution below an effective length that is of the order of the
wavelength, and second, the presence of multiple reflec-
tions. Contrary to previous approaches, here we do not try
to solve a simplified transport equation, but rather relate
directly the geometrical details of the scatterer distribution
to the propagation coefficient via its autocorrelation func-
tion. Our results demonstrate that the presence and char-
acteristics of monosized scatterers can be revealed via the
dispersion properties of the phase velocity at the macro-
scopic scale despite the minute ratio of the scatterer size to
the wavelength, namely, βa ∈ ½0.007–0.012�. In fact, the
ability of waves to probe microstructure in our context is
therefore determined by the ratio of the effective correlation
length ζ1Df to the wavelength λ, which is here above
unity with βζ1Df ∈ ½9–15�. This provides enhanced sensi-
tivity of the imaging method beyond its normal spatial
resolution with the limiting factor being the spatial extent
of the apparent fractality, not the size of the individual
scatterers.
These findings are generic to wave propagation and

show consistency with other reported wave phenomena.
Recently, the case of light propagation in a fractal medium
was studied by Barthelemy et al. [3]. Their experimental
conditions fall into the regime ωτf ≫ 1, i.e., Eq. (4)

applies. Anomalous propagation properties were observed
as long as df ≠ D. Light diffusion returned to classical
statistics for the case of a densely packed material with
monosized spheres. This situation corresponds to a
Euclidian lag-time distribution [df ¼ D; Fig. 1(b), open
squares] and hence to the absence of anomalous effects, in
agreement with Eq. (4).
More complex structures will lead to effective fractal

dimensions that depend not only on density, but also on
other structural characteristics. This has great potential in
medical applications. Hypothesizing that the contrast ratio
between the microvasculature and the background tissue is
strong enough, the characterization of the organization of
vascularized tissues via shear waves would provide a novel
mechanism for assessing vascular changes.
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