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We present a mechanism of global reaction coordinate switching, namely, a phenomenon in which the
reaction coordinate dynamically switches to another coordinate as the total energy of the system increases.
The mechanism is based on global changes in the underlying phase space geometry caused by a switching
of dominant unstable modes from the original reactive mode to another nonreactive mode in systems with
more than 2 degrees of freedom. We demonstrate an experimental observability to detect a reaction
coordinate switching in an ionization reaction of a hydrogen atom in crossed electric and magnetic fields.
For this reaction, the reaction coordinate is a coordinate along which electrons escape and its switching
changes the escaping direction from the direction of the electric field to that of the magnetic field and, thus,
the switching can be detected experimentally by measuring the angle-resolved momentum distribution of
escaping electrons.
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In the conventional picture of chemical reactions, a
system starts from a reactant and ends up with a product
by overcoming a first-rank saddle in between the two. If the
total energy of a system is close enough to the potential
energy of the saddle, a harmonic approximation of the
potential energy surface at the saddle is valid during
the time interval in which the system traverses through
the saddle. Then, the direction toward which the reaction
occurs is determined by the unstable mode at the saddle. As
the total energy increases, the nonlinearity of the potential
energy starts to play an important role even in the vicinity
of the saddle, and the nonlinear couplings between the
unstable mode and the other modes become no longer
negligible.
At the total energy in which the harmonic terms

dominate the nonlinear terms, one can still take them into
account in a perturbative manner [1–5] so that the resulting
perturbed unstable mode is decoupled from the other
perturbed modes and the perturbed unstable mode is
hyperbolic. A key geometrical object behind the perturbed
modes is a normally hyperbolic invariant manifold (NHIM)
[6,7], defined as a zero level set of the perturbed unstable
mode and its conjugate momentum on an equienergy
surface [5]. The NHIM has a pair of stable and unstable
normal directions that are linear combinations of this
perturbed unstable mode and its conjugate momentum.
There, the stable and unstable manifolds emanating in the
normal directions determine the directions toward which
the reaction occurs. Specifically, if the NHIM has a

topology of a hypersphere, these manifolds are cylindrical
and, thus, are called a cylindrical stable manifold and a
cylindrical unstable manifold, respectively. In that case,
every reactive trajectory should run through the cylindrical
stable manifold and then run through the cylindrical
unstable manifold [5,8–12].
If the total energy increases even further, the perturbative

construction of the NHIM starts to fail even with a Padé
approximation [13] and the underlying geometrical object,
the NHIM, also breaks down [14,15]. The NHIM is
persistent as long as its normal stability and instability
dominates its tangential stability and instability, respec-
tively. However, as the total energy increases, its tangential
stability and instability may become dominant due to the
nonlinear resonance within modes other than the unsta-
ble mode.
One of the physical manifestations of the breakdown of

the NHIM is reaction coordinate switching [14,15] in
which the reaction coordinate along which a reaction
proceeds dynamically switches to a nonreactive coordinate
as the total energy of the system increases, involving a
change in the associating reactant, product, and transition
state in between the two. This phenomenon is in opposition
to the conventional picture of chemical reactions, i.e., the
concept that the reactant, product, and transition state is
solely determined by the topography of the potential energy
surface and, thus, opens a new way to control the chemical
reaction in terms of the underlying phase space geometry.
The main subject of this Letter is to present a mechanism of
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reaction coordinate switching and to discuss its experi-
mental observability.
A hydrogen atom in crossed electric and magnetic fields

is one of the simplest atomic systems and, thus, has been
used as an ideal benchmark for validating theoretical
predictions [16–18]. In addition, in this system, by choos-
ing the magnitudes of the electric and magnetic fields
properly, an effective Planck constant can be made arbi-
trarily small so that the dynamics is approximated well by
the classical mechanics. For this reason, this system is one
of the most ideal systems for the main subject.
The Hamiltonian for a hydrogen atom in crossed electric

and magnetic fields is expressed by

H ¼ 1
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in the atomic unit system, where xi; Piði ¼ 1; 2; 3Þ are the
ith Cartesian coordinate and its conjugate momentum,
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − xsÞ2 þ x22 þ x23

p
, xs ¼ −ϵ1=2, and ωc is the

cyclotron frequency. This system has a saddle point at
the origin which is called the Stark saddle that connects two
distinct states: one in which the electron is bound to the
nuclei and the other in which it is not. This saddle is of rank
1; that is, only one mode is unstable leaving to either of the
states, while all of the other modes are stable. By using a
scaling transformation,
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the resulting Hamiltonian is
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where the (scaled) electric field ϵ0 is the only remaining
parameter [5]. In what follows, we omit 0 for simplicity.
Followed by a coordinate transformation, the quadratic part
of the Hamiltonian around the saddle can be diagonalized
by a linear transformation [5]. The resulting Hamiltonian
can be expressed by

Hðξ;η;p;qÞ ¼ λξηþ
X2
l¼1

ωl

2
ðp2

l þ q2lÞ þ
X
i;j≥0

cijðp;qÞξiηj;

ð4Þ
where ξ and η denote the linear combinations of the normal
coordinate and conjugate momentum of the reactive mode
defined at the saddle, and pl and ql are the normal
coordinates and the conjugate momenta of the nonreactive
modes, respectively. In addition, the terms cijðp;qÞξiηj
start from the order of 3 with respect to (ξ; η;p;q). λ is a

curvature of the potential energy surface along the unstable
normal coordinate, and ω1 and ω2 are two frequencies of
the nonreactive normal coordinates, which can be adjusted
by ϵ [5]. Here, we chose ϵ so that ω1 and ω2 satisfy 2∶1
resonance, i.e., ω2=ω1 ¼ 1=2, in order that the two non-
reactive modes can exchange energies through the reso-
nance. If the total energy of the system, E, is sufficiently
close to that of the saddle point, (ξ; η) can be regarded as the
reaction mode.
In the saddle region, the NHIM can be extracted by

transforming Eq. (4) to the following form [19]:

H̄ðξ̄; η̄; p̄; q̄Þ ¼ λξ̄ η̄þ
X2
l¼1

ωl

2
ðp̄2

l þ q̄2lÞ þ
X
iþj≥2
i;j≥0

c̄ijðp̄; q̄Þξ̄iη̄j:

ð5Þ
Here, again, the order of c̄ijðp̄; q̄Þξ̄iη̄j is not less than 3 with
respect to (ξ̄; η̄; p̄; q̄). This Hamiltonian, Eq. (5), satisfies

∂H̄ðξ̄; η̄; p̄; q̄Þ
∂ξ̄

����
ξ̄¼η̄¼0

¼ ∂H̄ðξ̄; η̄; p̄; q̄Þ
∂η̄

����
ξ̄¼η̄¼0

¼ 0 ð6Þ

for all p̄ and q̄ and, thus, a subset of phase space that
satisfies ξ̄ ¼ η̄ ¼ 0 is an invariant set of the system. The
NHIM is defined by the intersection between an equienergy
surface and the invariant subset.
In Fig. 1(a), we show cylindrical stable and unstable

manifolds [8–10] emanating from the NHIM, projected on
the coordinate space, at the total energy E ¼ 0.001 above
the Stark saddle. The proton is indicated by the yellow
circle and the NHIM by the blue dot. The cylindrical stable
manifold leading to the NHIM starting from the bound state
is indicated by red and the cylindrical unstable manifold
leading to the dissociation state by green. Every escaping
electron should run through the red cylinder and should
then run through the green cylinder to escape from the
proton. Note that, around this energy, these two cylinders
are emanating toward the ξ direction, which is in the x1-x2
plane. This is because if the total energy is sufficiently close
to that of the Stark saddle, the first and second terms in
Eq. (4) provide a good approximation of the Hamiltonian in
the vicinity of the Stark saddle.
However, when the total energy is far above the saddle

(E ¼ 0.71), the NHIM breaks down [14,15]. Moreover,
the intersection between the equienergy surface and the
invariant plane x3 ¼ P3 ¼ 0 (which is invariant due to the
symmetry of the system) instead becomes another NHIM in
a neighborhood of the unstable periodic orbit located in the
intersection between the original NHIM and the invariant
plane at the total energy E ¼ 0.99 [14,15]. The invariant
plane becomes normally hyperbolic in a much broader
phase space region than the neighborhood of the unstable
periodic orbit, which will be shown later. In the region, its
normal stretching and contracting rates dominate its tan-
gential ones. There, its stable and unstable manifolds
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emanating from normal directions to the invariant plane
determine directions toward which the reaction occurs. In
Fig. 1(b), these stable and unstable manifolds at the energy
E ¼ 1.45, projected on the coordinate space, are shown by
red and green, respectively. These stable and unstable
manifolds are constructed as follows: linear approximations
of local stable and unstable manifolds of the invariant plane
are constructed on the invariant plane by using Oseledec
decomposition [20,21]. Then, the local stable and unstable
manifolds are propagated backward and forward in time to
extend them to the global stable and unstable manifolds.
These two manifolds are no longer cylindrical, but trajec-
tories in the vicinity of these manifolds are expected to
follow these manifold due to the λ lemma [22]. Figure 1(b)
shows that these stable and unstable manifolds emanate
toward the x3 direction, which is perpendicular to the
original ξ direction. Because of this change, the directions
that an electron approaches or escapes from the proton
switch from the ξ direction to the x3 direction.
In Figs. 2(a) and 2(b), we show the ratio between the

normal and tangential stretching rates of the invariant plane
on the Poincaré surface, x2 ¼ 0; ðdx2=dtÞ > 0, at the total
energies E ¼ 0.5 and E ¼ 1.45. The normal (tangential)
stretching rate is the longtime asymptotic growth rate of a
distance between two adjacent trajectories whose initial
conditions are separated infinitesimally in the normal
(tangential) direction to the invariant plane. In Figs. 2(a)

and 2(b), the unstable periodic orbit is indicated by the
green cross and the region where the invariant plane is
normally hyperbolic; i.e., the normal stretching rate that
dominates the tangential stretching rate is indicated by red,
whereas that in the reverse case is indicated by blue.
Figure 2(b) shows that the invariant plane becomes nor-
mally hyperbolic over a broader region than that in
Fig. 2(a). To evaluate it more quantitatively, in Fig. 2(c),
we show a volume fraction of the normally hyperbolic
region in the invariant plane. Figure 2(c) indicates that the
volume fraction at the energy E ¼ 0.5 is only 3%, whereas
that at the energy E ¼ 1.45 is almost 50% and the onset of
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FIG. 2 (color online). (a),(b) Ratio between the normal
and tangential stretching rates of the invariant plane on the
Poincaré surface x2 ¼ 0; ðdx2=dtÞ > 0, at the total energy
(a) E ¼ 0.5 and (b) E ¼ 1.45. The proton is indicated by the
yellow circle and the periodic orbit by the green cross in each
figure. (c) Volume fraction in the invariant plane where the
normal stretching rate dominates the tangential stretching rate.
Those at energies E ¼ 0.5 and E ¼ 1.45 are indicated by the
arrows. The standard error of the volume fraction is less than
3.16 × 10−3 for all of the energies.
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FIG. 1 (color online). (a) The cylindrical stable and unstable
manifolds (indicated by red and green, respectively) emanating
from the NHIM (indicated by the blue dot), projected on the
coordinate space, at the total energy E ¼ 0.001 above the Stark
saddle. The proton is indicated by the yellow circle. (b) The stable
and unstable manifolds (indicated by red and green, respectively)
of the invariant plane (indicated by blue) at the total energy
E ¼ 1.45, projected on the coordinate space.
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the increase is at around E ¼ 0.6. This result indicates that
the invariant plane becomes normally hyperbolic in a much
broader phase space region than the neighborhood of the
unstable periodic orbit, which is a mechanism of the
reaction coordinate switching.
To investigate experimental observability of the reaction

coordinate switching, we show in Fig. 3(a) distributions of
the P3 values of the escaping electrons at the total energies
E ¼ 0.3; 0.5; 0.7; 1.0; 1.2; 1.5, starting in the vicinity of the
proton. The distribution is calculated by using 300000
randomly sampled trajectories and a bin size of 0.03 for
each energy. In this system, if the distance between the
electron and the proton, R, is sufficiently large, P3 is nearly
a constant of motion and, thus, its asymptotic value is well
defined. In this calculation, we define the asymptotic region
as the region where the Coulombic potential energy is less
than 0.01% of the total energy. If the NHIM exists, the
electron escapes toward the ξ direction, which is in the
x1-x2 plane, and, thus, the value of P3 is expected to be
distributed around P3 ≈ 0. Instead, at the energy above the
switching, the electron escapes toward the x3 direction and,
thus, the distribution is expected to have shoulders at the
finite values of P3. Figure 3 indicates that this is the case

and the distribution starts to have shoulders in between the
total energies E ¼ 0.7 and E ¼ 1.0. The energy E ¼ 0.7 is
close to the energy E ¼ 0.71 at which the NHIM breaks
down along several homoclinic orbits [15] and this suggests
that the emergence of the shoulders is triggered by the
breakdown of the NHIM. To detect the shoulders exper-
imentally by using an angular resolved detector, not only
the magnitude of P3 but also the ratio of P3 to the other
components, P1 and P2, needs to be large enough. In the
current setting, P1 and P2 are not constants of motion
even in the asymptotic region and they do not have
well-defined asymptotic values. Instead, we show the
histogram against the energy ratio between the energy of
the x3 component, E3 ¼ 1

2
P2
3, and that of the others,

E12 ¼ 1
2
½P1 − ðx2=2Þ�2 þ 1

2
½P2 þ ðx1=2Þ�2 − ϵx1, of the

escaping electron in the asymptotic region in Fig. 3(b).
Both of them are approximately constants of motion in the
asymptotic region and thus have well-defined asymptotic
values. Figure 3(b) indicates that the energy ratios are
sharply distributed around 0.0 for E ¼ 0.3 and 0.5 (the half
widths at half maximum of their distribution are less than
0.1), while those of the others have half widths at half
maximum larger than 0.6.
In this analysis, we did not take quantum effects into

account. To investigate this, we derive a scaled quantum
Hamiltonian corresponding to Eq. (3). By applying a
scaling transformation to the quantum Hamiltonian corre-
sponding to Eq. (2),

xi0 ¼ ω2=3
c xi; Ĥ0 ¼ ω−2=3

c Ĥ; ϵ0 ¼ ω−4=3
c ϵ; ð7Þ

the resulting Hamiltonian becomes

Ĥ0 ¼ −
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8
ðx021 þ x022 Þ − ϵ0x10;

ð8Þ
where ℏeff ¼ ω1=3

c is an effective Planck constant. If the
effective Planck constant is small, the electron dynamics
are expected to be described in terms of semiclassical or
classical mechanics. By tuning the electric and magnetic
fields, the effective Planck constant can be made arbitrarily
small. However, due to the limitation of the experimental
settings, attainable magnitude of the effective Planck
constant may be limited. If the value of ϵ0 is chosen as
before, the magnitude of the electric and magnetic fields
can be written in terms of the effective Planck constant,
such as B̄ ¼ 2.35 × 105 × ℏ3

eff T and Ē ¼ 1.88 × 1011×
ℏ4
eff V=m, in the SI, and the switching occurs at the total

energy 1.00 × ℏ2
eff a:u: above the Stark-saddle energy. The

attainable magnitudes of the electric and magnetic fields
highly depend on the experimental settings, but Raithel
et al. have reported that, in their protocol, the attainable
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FIG. 3 (color online). (a) Distributions of the P3 values of the
escaping electrons at the total energies E ¼ 0.3; 0.5; 0.7; 1.0; 1.2;
1.5. (b) Distributions of the energy ratio between the energy of the
x3 component, E3, and that of the others, E12, of the escaping
electrons at the total energies E ¼ 0.3; 0.5; 0.7; 1.0; 1.2; 1.5. In
these figures, the standard error is less than 1.73 × 10−4 for all of
the P3 values and the energies.
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ranges of the electric and magnetic fields are 0.2–6.0 T, and
103 ∼ 105 V=m, respectively [16,17]. If our experiment is
done under B̄ ¼ 2.0 T, and Ē ¼ 3.26 × 101 V=m, the
effective Planck constant becomes 2.04 × 10−2. Under
the setting, the switching occurs at the total energy
4.17 × 10−4 a:u: (91.14 cm−1) above the Stark-saddle
energy. The energy at which the switching occurs corre-
sponds to the principal quantum number n ≈ 71 for the
purely Coulombic problem without any external fields.
Indeed, experimental studies [16,17,23] have been carried
out for investigating such highly excited states (n ≈ 44 in
Ref. [17] and 90 ≤ n ≤ 150 in Ref. [23]) of 85Rb in crossed
electric and magnetic fields [17] and in an oscillating
electric field [23]. However, angle-resolved measurements
of the momentum distribution of escaping electrons pose a
challenge even with state-of-the-art experimental tech-
niques, and the predictions of the present work await their
further development.
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