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We propose an orbital exchange-correlation functional for applying time-dependent density functional
theory to many-electron systems coupled to cavity photons. The time nonlocal equation for the electron-
photon optimized effective potential (OEP) is derived. In the static limit our OEP energy functional reduces
to the Lamb shift of the ground state energy. We test the new approximation in the Rabi model. It is shown
that the OEP (i) reproduces quantitatively the exact ground-state energy from the weak to the deep strong
coupling regime and (ii) accurately captures the dynamics entering the ultrastrong coupling regime. The
present formalism opens the path to a first-principles description of correlated electron-photon systems,
bridging the gap between electronic structure methods and quantum optics for real material applications.
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The last two decades have witnessed increasing exper-
imental interest in the study and control of many-electron
systems strongly interacting with quantum electromagnetic
fields. This includes notable experiments in the areas of
cavity [1] and circuit [2] quantum electrodynamics (QED),
quantum computing via photon-mediated atom entangle-
ment [3], electromagnetically induced transparency [4],
quantum plasmonics [5], quantum simulators [6], and
chemistry [7,8]. The description of realistic coupled matter-
photon systems requires combining electronic structure
methods from materials science with quantum optical
models. Recently, a time-dependent density-functional
theory (TDDFT) for QED has been developed [9–12],
allowing for such a first-principles treatment. However,
any application of this theory requires approximations to
the electron-photon exchange-correlation (xc) functional,
which are currently not available.
In this Letter we construct the first approximation to the

xc functional of QED-(TD)DFT. To achieve this goal, we
extend the widely used optimized effective potential (OEP)
approach in electronic structure methods [13–18] to the
photon-mediated electron-electron coupling. The new
functional is tested from low to high coupling regime in
the Rabi model [19–21], through comparison with the exact
and classical solutions. We also address the functional
dependence on the initial many-body state, assumed to be
either a fully interacting or a factorizable state. In both
cases, the electron-photon OEP for the model performs
well, providing a promising path to the ab initio description
of strongly coupled matter-photon systems.
Consider a system with an arbitrarily large number N of

electrons at coordinates frigNi¼1, e.g., an atom, an ion, or a

molecule, interacting with M quantized electromagnetic
modes of a microcavity with frequencies ωα. We denote by
Ĥ0¼ T̂þ V̂eeþ V̂ext the Hamiltonian of the electronic sys-
tem with kinetic energy T̂, Coulomb interaction V̂ee, and
(time-dependent) external potential V̂ext¼

P
N
i¼1vextðritÞ,

due to the nuclei and any classical field applied to the
system. In the dipole approximation [22] the length-gauge
Hamiltonian [9,23,24] of the total electron-photon system
can be represented as follows:

Ĥ ¼ Ĥ0 þ
1

2

X
α

�
p̂2
α þ ω2

α

�
q̂α −

λα
ωα

R̂

�
2
�
; ð1Þ

where the second term corresponds to the energy
1=8π

R ðB̂2 þ Ê2Þdr of the transverse radiation field. The
magnetic field B̂α ¼

ffiffiffiffiffiffi
4π

p
p̂α in the α mode is proportional

to the photon canonical momentum p̂α, while the electric
field Êα ¼

ffiffiffiffiffiffi
4π

p ðωαq̂α − λαR̂Þ is related to the canonical
coordinate q̂α. The latter is defined via the displacement
field D̂α ¼

ffiffiffiffiffiffi
4π

p
ωαq̂α, which is the proper dynamical

variable conjugated to B̂α. Finally, λα describes the polari-
zation and the amplitude of the normalized Dα mode at
the position of the electronic system with dipole moment
R̂ ¼ P

N
i¼1 ri [25]. We define q̂α ¼ −ðâα þ â†αÞ= ffiffiffiffiffiffiffiffi

2ωα

p
in

terms of photon annihilation and creation operators. The
photon-induced interaction Hamiltonian in Eq. (1) consists
of two terms: (i) the “cross” term ∼q̂αR̂

V̂el-ph ¼
X
α

ffiffiffiffiffiffi
ωα

2

r
ðâα þ â†αÞ

Z
d3rðλαrÞn̂ðrÞ; ð2Þ
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where n̂ðrÞ ¼ P
iδðr − riÞ is the electron density operator,

describing the dipole-displacement coupling, and (ii) the
“squared” term

P
αðλαR̂Þ2=2, representing the polarization

energy of the electrons. The coupling to the quantized
radiation field then gives rise to an additional, photon-
mediated electron-electron interaction

Weeð1; 2Þ ¼
X
α

ðλαr1Þðλαr2ÞWαðt1; t2Þ;

Wαðt1; t2Þ ¼ ω2
αDαðt1; t2Þ þ δðt1 − t2Þ; ð3Þ

wherewe use the compact notation1 ¼ ðr1t1Þ. Here, the first
term is the effective interaction, via the photon displacement
Dα propagator iDαðt1; t2Þ≡ hT fqαðt1Þqαðt2Þgi, derived
from Eq. (2). The second term, due to the polarization
contribution in the Hamiltonian, removes the instantaneous
part of theDα propagator and brings it to the Eα propagator,
which describes the full physical interaction mediated by
the quantized electric field [26].
Our formulation of QED-(TD)DFT combines one of the

most popular exact methods for ground (excited) state
electronic calculations [27], with the full quantum treat-
ment of the electromagnetic field. In this theory, the wave
function of the total system Ψðfrjg; fqαg; tÞ is a unique
functional of the electron density nðrtÞ ¼ hΨjn̂ðrÞjΨi and
the expectation values of the photon coordinates QαðtÞ ¼
hΨjq̂αjΨi [9]. The former can be calculated for a fictitious
Kohn-Sham (KS) system of N noninteracting particles,
whose orbitals fϕjg satisfy the self-consistent equations
i∂tϕjðrtÞ ¼ ½−∇2=2þ vsðrtÞ�ϕjðrtÞ with the potential
vs ¼ vext þ velHxc þ vαeff . Here, we assume [9] the separate
description of the Coulomb interaction Vee and the photon-
mediated interaction Wee by the standard TDDFT Hartree-
xc term velHxc½n� and the effective potential vαeff ½n;Qα�. The
latter is defined as vαeff ¼ vαMF þ vαxc, where

vαMFðrtÞ ¼
Z

d1WR
eeðrt; r1t1Þnðr1t1Þ ð4Þ

is the mean-field contribution due to M classical electro-
magnetic modes, whose expectation values Qα obey the
Ampere-Maxwell equation for the displacement field.
All the quantum many-body effects are embedded in the
unknown xc potential, which must be approximated.
Assuming the treatment of the electronic contribution velxc
by standard TDDFT functionals (e.g., x-only OEP or KLI
[13], ALDA, GGA), we generalize the OEP approach to
construct approximations to the photonic contribution vαxc.
We derive the TDOEP equation for the electron-photon

system starting from the linearized Sham-Schlüter equation
on the Keldysh contour [15]

Z
d2Gsð1; 2Þvxcð2ÞGsð2; 1Þ

¼
Z

d2
Z

d3Gsð1; 2ÞΣð2; 3ÞGsð3; 1Þ; ð5Þ

where the electron self-energy Σ contains the interaction
Wee of Eq. (3) and Gs is the Green’s function of the time-
dependent KS system. Equation (5) allows one to pertur-
batively construct the local potential vxc, that mimics the
effects of the self-energy Σ, to any desired order in the
coupling strength λα. Analogously to the GW approxima-
tion [28,29] for electronic structure methods, we approxi-
mate the electron self-energy by the exchangelike diagram

Σð1; 2Þ ¼ iGsð1; 2ÞWeeð2; 1Þ; ð6Þ
where we assume the photon propagator in Wee to be free.
Here, the quantum nature of the electromagnetic field is
accounted for by the dynamical part of Σ, related to the
first term of Eq. (3). This part describes the processes of
emission and absorption of a photon. Neglecting the above
dynamical contribution to veff corresponds to the classical
treatment of the electromagnetic field.
Making use of the Langreth rules [30], we rewrite Eq. (5)

more explicitly as follows

i
Z

t

−∞
dt1GR

s ðt; t1Þvxcðt1ÞG<
s ðt1; tÞ þ c:c:

¼ i
Z

t

−∞
dt1

Z
t1

−∞
dt2GR

s ðt; t1Þ½Σ>ðt1; t2ÞG<
s ðt2; tÞ

− Σ<ðt1; t2ÞG>
s ðt2; tÞ� þ c:c:; ð7Þ

where the superscripts R, > and < stand for retarded,
greater, and lesser Keldysh components, respectively, and
the integration over the spatial coordinates is implied. For
computational convenience we consider Eq. (7) in the low
temperature limit T → 0. The electron-photon collision
integral on the right-hand side then is responsible for the
spontaneous photon emission of the excited electrons and
the broadening in the electronic levels. Using Eq. (6) for the
self-energy and expressing all Gs in terms of KS orbitals
[30], Eq. (7) becomes

i
X
i;j

Z
t

−∞
dt1½hϕiðt1Þjvxðt1Þjϕjðt1Þifi − Sijðt1Þ�ϕ�

jðtÞϕiðtÞ

þ c:c: ¼ 0; ð8Þ
where we define

Sijðt1Þ ¼
X
k;α

Z
t1

−∞
dt2dαikðt2Þdαkjðt1Þ½ð1 − fiÞfkW>ðt1; t2Þ

− fið1 − fkÞW<ðt1; t2Þ�
with W≷ðt1; t2Þ ¼ ω2

αð−i=2ωαÞe�iωαðt2−t1Þ � δðt1 − t2Þ.
Here, fi is the fermion occupation number and dαikðtÞ ¼
λαhϕiðtÞjrjϕkðtÞi is the dipole matrix element projected on
the coupling constant of the α mode. For definiteness we
assume that the external potential vext does not depend on
time for all t < 0. Hence the orbitals fϕjg are solutions
of the KS equations with the initial condition ϕjðrtÞ ¼
ϕjðrÞe−iεjt for −∞ < t ≤ 0. Equation (8) relates the matrix
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elements of vx to the matrix elements Sij of the self-energy
Σ, and thus to the physical processes of excitation
(annihilation) of electron-hole pairs by photon absorption
(emission). Alternatively, Eq. (8) can be derived via
variational principle from the Keldysh action functional,
with the exchange part given by

Ax ¼
X
i;k;α

Z
dz1

Z
dz2dαikðz2Þdαkiðz1Þð1 − fiÞfk

× θðz1 − z2Þ
�
ω2
α

�
−i
2ωα

�
eiωαðz2−z1Þ þ δðz1 − z2Þ

�
;

where z denotes the contour variable. Furthermore, the
time-dependent mean-field potential is evaluated from
Eq. (4) as

vMFðrtÞ ¼ −
X
α

ωαðλαrÞ
Z

t

0

dt1 sin ½ωαðt − t1Þ�½λαRðt1Þ�

−
X
α

ðλαrÞf½λαRð0Þ� cosðωαtÞ − ½λαRðtÞ�g;

ð9Þ

where RðtÞ ¼ R
d3rrnðrtÞ is the expectation value of the

dipole moment operator of the electronic system.
In the case of time independent external potential, Eq. (8)

reduces to the stationary OEP equation for the equilibrium
electron-photon system

X
i;j

� hϕijvxjϕji
εi − εj − iη

fi − Sij

�
ϕ�
jðrÞϕiðrÞ þ c:c: ¼ 0; ð10Þ

where

Sij ¼
X
k;α

dαikd
α
kjðεi − εk − iηÞ

2ðεi − εj − iηÞ
�

fið1 − fkÞ
εi − εk − ωα − iη

þ ð1 − fiÞfk
εi − εk þ ωα − iη

�
: ð11Þ

Here, we assume the limit η → 0. Apparently, Eq. (11)
describes virtual processes of excitation of electron-hole
pairs, supplemented by the emission of photons.
Variationally Eq. (10) can be derived employing the
second-order correction to the ground-state energy

Ex ¼ −
1

2

X
i;k;α

jdαikj2
�
ωα

ð1 − fiÞfk
εi − εk þ ωα

− ð1 − fiÞfk
�
;

ð12Þ
which is the Lamb shift due to the virtual emission of
photons [31]. The second term in Eq. (12) comes from the
term

P
αðλαRÞ2=2 in the Hamiltonian, and accounts for

the free electron behavior in the high photon energy
limit ωα → ∞.

As a proof of principles, we apply these results to a
simple, yet nontrivial quantum optical model that can be
solved exactly, i.e., the tight-binding model for the Hþ

2

molecule coupled to one photon mode. The one electron
choice here prevents from introducing the extra error in
approximating the standard TDDFT potential velxc, thus
allowing us to assess the accuracy of our approximation to
the electron-photon potential vxc. The electron coordinate
can only take two values, given by the atomic site indexes
(1,2). The electron density reduces to the on-site occupation
number n1;2. By projecting the Hamiltonian in Eq. (1) onto
the two-site space, the electronic kinetic energy gives the
tunneling amplitude between the sites. As the total occu-
pation is fixed, the external and photon fields couple to the
on-site occupation difference Δn ¼ n1 − n2. This plays
the role of the TDDFT density variable for the model. In
terms of Pauli matrices σx;z [T̂ → −Tσ̂x and Δn̂ → σ̂z], the
projected Hamiltonian

Ĥ ¼ −Tσ̂x þ
� ffiffiffiffi

ω

2

r
λðâþ â†Þ þ vextðtÞ

�
σ̂z

þ ω

�
â†âþ 1

2

�
þ λ2

2
ð13Þ

reads isomorphic to the Rabi Hamiltonian with external
potential vextðtÞ and coupling strength

ffiffiffiffiffiffiffiffiffi
ω=2

p
λ.

We consider first the system in equilibrium. The sum-
mation in Eq. (10) runs over the ground (g) and excited (e)
KS states with the corresponding orbitals, ϕ†

g ¼ ðv̄; ūÞ and
ϕ†
e ¼ ðū;−v̄Þ, and eigenvalues, εg ¼ −W and εe ¼ W.

Here, ū; v̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� vs=WÞ=2p
and W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2s þ T2

p
.

Explicitly, Eq. (10) gives

vx ¼ −λ2
vs
W

�
ωðωþ 3WÞ
ðωþ 2WÞ2 − 1

�
; ð14Þ

where the second term corresponds to the classical con-
tribution associated with the first interaction term in Eq. (3).
The total energy functional takes the form

E½vs� ¼ −Thσxi þ vextΔnþ Ex½vs� þ
1

2
ω; ð15Þ

where Δn ¼ −vs=W and Eq. (12) reduces to

Ex ¼
λ2T2

Wðωþ 2WÞ : ð16Þ

The Lamb shift of Eq. (16) vanishes in the classical limit of
coupling λ → ∞, as expected.
In Fig. 1 we show the calculated OEP density difference

Δn and total energy E as functions of the coupling strength
λ, compared to the results from the exact and classical
treatment of the electromagnetic field. It is worth noting
that 0.1≲ λ≲ 1.4 and λ≳ 1.4 corresponds, respectively, to
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ultrastrong [32] and deep strong coupling [33] values. The
eigenvalue problem for the static Rabi Hamiltonian in
Eq. (13) is solved by employing the exact diagonalization
technique [34,35], after proper truncation of the Fock
space. We observe that both the OEP and classical
approximations reproduce qualitatively the electron’s con-
finement on the excited level, as the shift in the energy
levels increases with the coupling strength, and recover the
exact result in the limit λ → ∞. In addition, our OEP
scheme is by construction exact in the weak coupling
regime. For the density difference Δn shown in (a), we see
excellent agreement between the OEP and the exact results
up to λ ¼ 0.7 and above λ ¼ 2. On the contrary, the
classical result is only asymptotically accurate and largely
underestimating in between. Regarding the energies E
shown in (b), the OEP energy is close to the exact values
in the whole coupling range, with only small deviations
around λ ¼ 1.3. In contrast, the classical approximation
performs reliably only in the limits of very small or very
high interaction strength.
The TDOEP Eq. (8) for the Rabi model simplifies to

i
Z

t

−∞
dt1 ~vxðt1Þdgeðt1ÞdegðtÞ þ c:c:

¼ λ2ω

Z
t

−∞
dt1

Z
t1

−∞
dt2cðt; t1Þdegðt2Þeiωðt2−t1Þ þ c:c:;

ð17Þ

where ~vx ¼ vxðtÞ þ λ2ΔnðtÞ, dgeðtÞ ¼ hϕgðtÞjσ̂zjϕeðtÞi,
and cðt; t1Þ ¼ dgeðtÞΔnðt1Þ − dgeðt1ÞΔnðtÞ. Moreover, the
mean-field potential of Eq. (9) explicitly reads as

vMFðtÞ ¼ −λ2ω
Z

t

0

dt1 sin ½ωðt − t1Þ�Δnðt1Þ

− λ2Δn cosðωtÞ þ λ2ΔnðtÞ:

Employing the numerical algorithm presented in Ref. [36],
we solve Eq. (17) self-consistently for t > 0, together with
the time-dependent KS equation. The former, which is a
Volterra integral equation of the first kind, is evaluated
using a midpoint integration scheme combined with the
trapezoidal rule [37]. The latter is propagated with a
predictor-corrector scheme using an exponential midpoint
propagator [38]. In Fig. 2 we compare the time evolution of
the calculated OEP density difference Δn and effective
potential veff with the exact and classical results, approach-
ing the ultrastrong coupling regime in two different setups.
In the first setting, we assume that the electron-photon
system, interacting with coupling constant λ ¼ 0.1, is
driven out of equilibrium at t ¼ 0 by a sudden switch in
the external perturbation vextðtÞ ¼ −0.2sgnðtÞ. In the
second configuration, we choose a noninteracting initial
state with vextðtÞ ¼ 0, while switching on at later times
the electron-photon coupling λðtÞ ¼ 0.1θðtÞ. Here, we
use as the initial state for the propagation jΨi ¼
ð1=2j1i þ ffiffiffi

3
p

=2j2iÞ ⊗ j0i, where j1i and j2i are the basis
vectors of the electron system, and j0i is the photon vacuum
field. For the chosen parameters, the various density
differences in the two setups undergo off-resonant Rabi
oscillations with nearly identical relative behavior. The
errors δΔn in the OEP and classical density difference are
shown in (a) for the sudden-switch example. The first is
remarkably low in the entire coupling range. The second
is about 10% at t ¼ 20 a.u. and increases up to 20% at
t ¼ 40 a:u: The quantum contribution to the OEP is given
by the right-hand side of Eq. (17) and its role in the Rabi

FIG. 1 (color online). Comparison of the OEP (red), exact
(black), and classical (green) (a) density difference Δn and
(b) energy E versus the coupling parameter λ in a.u. Other
parameters: ω ¼ 1, vext ¼ 0.2, T ¼ 0.7.

FIG. 2 (color online). Comparison of the (a) errors δΔn in the
TDOEP (black) and classical (blue) density difference Δn and
(b),(c) TDOEP (red), exact (black), and classical (green) effective
potential veff versus time t in a.u. for the configurations: (a),(b)
vext ¼ −0.2sgnðtÞ, λ ¼ 0.1 and (c) vext ¼ 0, λ ¼ 0.1θðtÞ. Other
parameters: ω ¼ 1, T ¼ 0.7.
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oscillations is essentially quantified by the error in the
classical density difference. Significant is also the improve-
ment of the OEP approach against the classical approxi-
mation in the effective potential. It should be noted that,
unlike the density difference, this doesn’t correspond to a
physical observable. As we can see in (b) for the sudden-
switch case, and in (c) for the noninteracting initial
configuration, the TDOEP result is very accurate up to
t ¼ 20 a:u: At later times, small deviations appear, espe-
cially in (c), where the potential shows a more complex
dynamics. Nevertheless, the improvement with respect to
the classical result is still evident.
In conclusion, a first-principles approach for describing

the quantum dynamics of realistic many-electron systems
interacting with photons is proposed. For methodological
purposes we have considered here its application to the
off-resonant Rabi model. It has been shown that already
the lowest order (TD)OEP for the model gives accurate
stationary and dynamical properties far beyond the weak-
coupling regime, clearly improving over the classical
treatment of the electromagnetic field. Future developments
include simplifying the QED-TDOEP scheme along the
lines of the TDKLI approximation [13,39]. This work
opens the path to a simplified numerical description of
novel phenomena at the interface between condensed
matter physics and quantum optics.
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