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We report an observation of the process J/y — yX(1835) - ngKgn at low KgKg mass with a
statistical significance larger than 12.9¢ using a data sample of 1.31 x 10° J/y events collected with the
BESIII detector. In this region of phase space the K3K9 system is dominantly produced through the
f0(980). By performing a partial wave analysis, we determine the spin parity of the X(1835) to be
JPC€ = 07*. The mass and width of the observed X(1835) are 1844 & 9(stat)",¢(syst) MeV/c? and
192f12$(stat) ffg(syst) MeV, respectively, which are consistent with the results obtained by BESIII in the

channel J/y — yxtn 7.

DOI: 10.1103/PhysRevLett.115.091803

The non-Abelian property of quantum chromodynamics
(QCD) permits the existence of bound states beyond
conventional mesons and baryons, such as glueballs, hybrid
states, and multiquark states. The search for these uncon-
ventional states is one of the main interests in experimental
particle physics. One of the most promising candidates, the
X (1835) resonance, was first observed in its decay to
#ta~n' in the process J/y — yz"z~n' by BESII [1]; this
observation was subsequently confirmed by BESIII [2].
The discovery of the X(1835) has stimulated theoretical
speculation concerning its nature. Possible interpretations
include a pp bound state [3], a second radial excitation of
the #' [4], and a pseudoscalar glueball [5]. In addition, an
enhancement in the invariant p p mass at threshold, X(pp),
was first observed by BESII in the decay J/yw — ypp [6],
and was later also seen by BESIII [7] and CLEO [8]. In a
partial-wave analysis of J/w — ypp, BESII determined
the JP€ of the X(pp) to be 0=+ [9]. The mass of the X(pp)
is consistent with the X(1835) mass measured in J/y —
yrtz~n' [2], but the width of the X(pp) is significantly
narrower.

To understand the nature of the X(1835), it is crucial
to measure its J©C and to search for new decay modes.
Because of its similarity to J /w —yata"y', J/w —>yKKpn is
a favorable channel to search for X(1835) — KK
In contrast to J/y — yK"K™n, there is no background
contamination for J/y — yK%K% from J/y — 2°K3Kn
and J/y — K%KJ5, which are forbidden by exchange
symmetry and CP conservation. Therefore, the channel
J/y — ngKgn provides a clean environment with min-
imal uncertainties due to background modeling. In this
Letter, we report the first observation and spin-parity
determination of the X(1835) in J/y — yK%K%y, where
the K and » are reconstructed from their decays to 7z~
and yy, respectively. The analysis is based on a sample of
(1310.6 £ 10.5) x 10 J/y events [10,11] collected with
the BESIII detector [12].

The BESIII detector is a magnetic spectrometer operat-
ing at BEPCII, a double-ring e e~ collider with center of
mass energies between 2.0 and 4.6 GeV. The cylindrical
core of the BESIII detector consists of a helium-based main
drift chamber (MDC), a plastic scintillator time-of-flight
system, and a CsI(TI) electromagnetic calorimeter (EMC)
that are all enclosed in a superconducting solenoidal
magnet providing a 1.0 T (0.9 T in 2012, for about

PACS numbers: 13.20.Gd, 13.66.Bc, 14.40.Be

1087 x 10° collected J/y) magnetic field. The solenoid
is supported by an octagonal flux-return yoke with resistive
plate counter muon identifier modules interleaved with
steel. The acceptance of charged particles and photons
is 93% of the 4z solid angle, and the charged-particle
momentum resolution at 1 GeV/c is 0.5%. The EMC
measures photon energies with a resolution of 2.5% (5%)
at 1 GeV in the barrel (end caps). A GEANT4-based [13]
Monte Carlo (MC) simulation software package is used to
optimize the event selection criteria, estimate backgrounds,
and determine the detection efficiency.

Charged tracks are reconstructed using hits in the MDC.
Because there are two Kg with displaced vertices, the point
of closest approach of each charged track to the eTe™
interaction point is required to be within +30 cm in the
beam direction and within 40 cm in the plane perpendicular
to the beam direction. The polar angle between the
direction of a charged track and the beam direction must
satisfy | cos 8] < 0.93. Photon candidates are selected from
showers in the EMC with the energy deposited in the EMC
barrel region (| cos 6| < 0.8) and the EMC end caps region
(0.86 < | cos @] < 0.92) greater than 25 MeV and 50 MeV,
respectively. EMC cluster timing requirements are used to
suppress electronic noise and energy deposits unrelated to
the event.

Candidate J/y — yK%K%; events are required to have
four charged tracks with zero net charge and at least three
photon candidates. All charged tracks are reconstructed
under the pion hypothesis. To reconstruct K candidates,
the tracks of each 7z~ pair are fitted to a common vertex.
K9 candidates are required to satisfy |[M -, —myo| <
0.009 GeV/c? and L/6; > 2, where L and o, are’ the
distance between the common vertex of the z* 7z~ pair and
the primary vertex, and its error, respectively. The yyyK9K$
candidates are subject to a kinematic fit with four con-
straints (4C), ensuring energy and momentum conserva-
tion. Only candidates where the fit yields a y3. value
less than 40 are retained for further analysis. For events
with more than three photon candidates, multiple J/y —
yK3K%n candidates are possible. Only the combination
yielding the smallest y7. is retained for further analysis.
Candidate J/y — yK$K%n events are required to have
exactly one pair of photons within the # mass window
0.51 <M,, <0.57 GeV/c?). Simulation studies show
this criterion significantly reduces the miscombination of
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photons from 3.20% to 0.16%. The miscombination of
pions is also studied and found to be negligible. To further
suppress background events containing a z°, events with
any photon pair within a z° mass window (0.10 < M, <
0.16 GeV/c?) are rejected. The decay J/y — KK with
¢ — yn leads to the same final state as the investigated
reaction J/y — yKOK n. Therefore, events in the mass
region |M,,, — m,| < 0.04 GeV/c? are rejected.

After applying the selection criteria discussed above, the
invariant mass spectrum of K3K%, shown in Fig. 1(a) is
obtained. Besides a distinct 7. signal, a clear structure
around 1.85 GeV/c? is observed. The K9K§ mass spec-
trum, shown in Fig. 1(b), reveals a strong enhancement near
the K$K§ mass threshold, which is interpreted as the
f0(980) by considering spin-parity and isospin conserva-
tion. The scatter plot of the invariant mass of KK versus
that of K9K$# is shown in Fig. 1(c). A clear accumulation
of events is seen around the intersection of the f,(980) and
the structure around 1.85 GeV/ ¢?. This indicates that the
structure around 1.85 GeV/c? is strongly correlated with
f0(980). By requ1r1ng M KOK) < 1.1 GeV/c?, the structure
around 1.85 GeV/c? becomes much more promment in
the K9K% mass spectrum [Fig. 1(d)]. In addition, there is
an excess of events around 1.6 GeV/c?.

Potential background processes are studied using a
simulated sample of 1.2 x 10° J/y decays, in which the
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FIG. 1 (color online). Invariant mass distributions for selected
events: Invariant mass spectra of (a) KOKgn and (b) K9KY;
(c) scatter plot of M KoKy versus Myogo,: ; (d) K%9K9n invariant
mass spectrum for events with the’ requirement M KoK <
1.1 GeV/c?. Dots with error bars are data; the shaded hlstograms
are the non-7 backgrounds estimated by the # sideband; the solid
histograms are phase space MC events of J/y — yK%K%7 with
arbitrary normalization.

decays with measured branching fractions are generated by
EVTGEN [14] and the remaining J/y decays are generated
according to the LUNDCHARM [15] model. Simulated events
are subject to the same selection procedure applied to data.
No significant peaking background sources have been
identified in the invariant mass spectrum of KOKgn
Dominant backgrounds stem from J/y — yKOK 7" and
J/w — yK$K%x%7°. These non-n backgrounds are consid-
ered in the partial wave analysis (PWA) by selecting events
from data in the 5 sideband regions defined as 0.45 <
M,, <0.48 GeV/c? and 0.60 < M,, < 0.63 GeV/c?, and
they account for about 2.5% of the total number of events
in the 5 signal region.

A PWA of events satisfying Mok, < 2.8 GeV/c* and
Mgogo < 1.1 GeV/c? is performed to determine the

parameters of the structure around 1.85 GeV/c?. These
restrictions reduce complexities due to additional inter-
mediate processes. The signal amplitudes are parameter-
ized as sequential two-body decays, according to the isobar
model: J/y — yX, X —» Yn or ZK?, where Y and Z
represent the K9KY and K%n isobars, respectively. Parity
conservation in the J/w — yK3K% decay restricts the
possible JPC of the K9K$n (X) system to be 0=+, 177,
27+ 27t 3% etc. In this Letter, only spins J < 3 and
possible S-wave or P-wave decays of the X are considered.
The amplitudes are constructed using the covariant tensor
formalism described in Ref. [16]. The relative magnitudes
and phases of the partial wave amplitudes are determined
by an unbinned maximum likelihood fit to data. The
contribution of non-x background events is accounted
for in the fit by subtracting the negative log-likelihood
(NLL) value obtained for events in the n sideband region
from the NLL value obtained for events in the # signal
region. The statistical significance of a contribution is
estimated by the difference in NLL with and without the
particular contribution, taking the change in degrees of
freedom into account.

Our initial PWA fits include an X(1835) resonance in
the f,(980)n channel and a nonresonant component in one
of the possible decay channels f,(980)n, fy(1500)y or
£2(1525)n. All possible J¥€ combinations of the X (1835)
and the nonresonant component are tried. We then extend
the fits by including an additional resonance at lower
K9K%7 mass. This additional component, denoted here as
the X(1560), improves the fit quality when it is allowed
to interfere with the X(1835). Our final fits show that
the data can be best described with three components:
X(1835) = f¢(980)n, X(1560) — f,(980)y, and a non-
resonant f(1500)n component. The J¥€ of the X(1835),
the X(1560), and the nonresonant component are all found
to be 0~*. The X(1835), X(1560), and f,(1500) are
described by nonrelativistic Breit-Wigner functions, where
the intrinsic widths are not energy dependent. The masses
and widths of the X(1835) and X(1560) are derived by
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scanning each over a certain range. The f,(1500) mass and
width are fixed to the values reported in Ref. [17]. The
f0(980) is parameterized by the Flatté formula [18], with
the parameters fixed to the values reported by BESII [19]
in the channels J/w — ¢a™n~ and J/yw — ¢KTK~. The
scan returns a mass and width of the X(1835) of 1844 +
9 MeV/c? and 192f12§) MeV, respectively. The mass and
width of the X(1560) are determined to be 1565+
8 MeV/c? and 451“]1;‘ MeV, respectively. Using a detection
efficiency of 5.5%, obtained by a MC sample weighted
by partial wave amplitudes, the product branching fraction
of J/y — yX(1835) and X(1835) - K%K (Bx(1835))
is calculated to be (3.317033) x 107°, where the decay
X(1835) — K%K 9y is dominated by f((980) production.
The K3Kn, K9KY, KSn mass spectra and the distributions
of the J/w, K§Kn and K$KY decay angles are shown in
Fig. 2. Overlaid on the data are the PWA fit projections, as
well as the individual contributions from each component.
The x?/ny, value is displayed on each figure to

demonstrate the goodness of fit. We evaluate the signifi-
cance by applying the likelihood ratio test, performing a
separate fit for every systematic variation detailed below.
The most conservative statistical significances of the
X(1835) and X(1560) are 12.9¢ and 8.9¢, respectively.
Various fits are performed by changing the J¥¢ and
decay mode of the nonresonant component compared to the
nominal solution described above. The NLL value of a fit
with a 1" nonresonant f,(1500)7 component is only
worse by 0.8 compared to the nominal solution, which
indicates that we cannot distinguish between the two spin
assignments of the nonresonant component with our
present statistics. This ambiguity introduces large system-
atic uncertainties in the By(g3s), since the interference
between the X(1835), X(1560), and the nonresonant
component depends on the spin assignment of the latter.
To establish the J¥C of the X(1835), we perform a series
of PWA fits assuming alternative J” hypotheses for both
the X(1835) and the nonresonant contribution. For the
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FIG. 2 (color online).

Comparisons between data and PWA fit projections. (a), (b), and (c) are the invariant mass distributions of

KYK9n, K9KY, and K97 (two entries/event), respectively. (d)—(f) are the angular distributions of cos 6, where  is the polar angle of (d) y
in the J/y rest system; (e) 7 in the K(S]Kgn rest system; and (f) K (S) in the K (S)K(s) rest system (two entries/event). The dots with error bars
are data, the solid histograms are the PWA total projections, the shaded histograms are the non-; backgrounds estimated by the
sideband, and the short-dashed, dash-dotted, and long-dashed histograms show the contributions of X(1835), X(1560), and the

nonresonant component, respectively.
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nonresonant contribution, we also test several possible
decay channels [f((980)y, fo(1500)n, and f,(1525)5]
in turn. For each nonresonant component assumption,
the X(1835) 0~" hypothesis is significantly better than
the 17" or 27 hypotheses, with the NLL value improving
by at least 41.6 units. Analogously, we perform the same
series of PWA fits for the X(1560). Again the 0~"
hypothesis for the X(1560) always yields a significantly
better fit result than other J©C assignments, with the NLL
value improving by at least 12.8 units.

We evaluate the contributions from additional well-
known resonances by adding them individually to the
fit. We consider all possible combinations for X and its
subsequent decay products Y and Z as given in
Ref. [17]: for X, this includes 5(1760), n(2225), f1(1510),
1,(1870), f,(1810), f5(1910), f(1950), f,(2010),
f2(2150), f»(2300), f»(2340), f;(2220); for 7Y,
f0(980), fo(1500), fo(1710), f,(1270) and f,(1525);
for Z, K*(1410), K*(1680), K;(1430), K;(1950),
K%(1430), and K3%(1980). Additional nonresonant contri-
butions with various J¢ and decay modes are studied as
well. The statistical significances of the additional con-
tributions are smaller than 5¢. In order to check the possible
contribution from a nonresonant KgKg process, we add a
X(1835) — (K3KY)4n process into the nominal solution,
where (K$K?%) refers to a nonresonant K9K§ contribution
in a relative S wave. We find the resulting significance
of the X(1835) — f(980)n process and the X(1835) —
(K9KY)gn process to be 6.8¢ and 1.60, respectively, so we
do not include the latter process in the nominal solution.
We also test a fit by changing the decay mode of the
X(1560) in the nominal solution from f,(980)y to
(KYKY)gn; the fit with X(1560) — (K3K9)¢n has almost
the same fit quality as the nominal solution. Therefore, with
the present statistics, we cannot draw a conclusion about the
X (1560) decay mode. The largest differences in masses and
widths of the X(1835) and X(1560) and the product
branching fraction By g35) between all above alternative
fits and the nominal solution are taken as systematic
uncertainties from the components in the nominal solution.

For the measurements of the masses and widths of the
X (1835) and X(1560) and the product branching fraction
By 1835), we include the following sources of systematic
uncertainties in addition to the sources discussed above: we
change the K%K mass range to Mogo < 1.05, 1.15 and

1.20 GeV/c?; we change the f(980) mass and coupling
constants in the Flatté formula to other experimental
measurements [20-22]; we change the f,(1500) mass
and width by one standard deviation [17]; we increase
and decrease the non-x background level by one standard
deviation; we change the parameterization of the X(1835)
and X(1560) line shape to a Breit-Wigner function whose
intrinsic width is energy-dependent [23]; and we replace
the X(1560) by 5(1405) or n(1475). For the systematic

errors of the product branching fraction By;s3s), we also

consider the following additional uncertainties. The K?
reconstruction efficiency is studied using two control
samples of J/y — K**K¥ and J/y — ¢KIK*zT, while
the photon detection efficiency is investigated based on a
clean sample of J/y — pz. The differences between data
and MC simulation are 1.0% for each K% and 1.0% for
each photon [24]. A control sample of J/y — yK3K9x" is
selected to estimate the uncertainty associated with the 4C
kinematic fit. The efficiency is the ratio of the signal yields
with and without the kinematic fit requirement 3. < 40.
The difference between data and MC simulation, 1.5%, is
assigned as the systematic uncertainty. We also consider the
uncertainties from the number of J/y events [10,11] and
the branching fractions of Kg — atz”andn — yy [17]. We
change the mass and width of X(1835) or X(1560) by 1
standard deviation of the statistical uncertainty. The indi-
vidual uncertainties are assumed to be independent and are
added in quadrature to obtain the total systematic uncer-
tainties as presented in the Supplemental Material [25].

In summary, a PWA of J/y — ngKgn has been per-
formed in the mass range M KoKy < 2.8 GeV/c? after
requiring M KOK) < 1.1 GeV/c*. The PWA fit requires a
contribution from X(1835) — K9K%n with a statistical
significance greater than 12.96, where the X(1835) —
KK is dominated by f(980) production. The spin parity
of the X(1835) is determined to be 0~". The mass and
width of the X(1835) are measured to be 1844 +
9(stat) )% (syst) MeV/c? and 1921 (stat) *$3 (syst) MeV,
respectively. The corresponding product branching fraction
By (1s35) is measured to be [3.317033 (stat) | 36 (syst)] x 107>.
The mass and width of the X(1835) are consistent with
the values obtained from the decay J/w — yz™z~nf by
BESIII [2]. These results are all first-time measurements
and provide important information to further understand
the nature of the X(1835).

Another 0~ state, the X(1560), also is observed in
data with a statistical significance larger than 8.9¢
and is seen to interfere with the X(1835). The mass
and width of the X(1560) are determined to be 1565 +
8(stat) T2, (syst) MeV/c? and 45™|%(stat) 34 (syst) MeV,
respectively. The mass and width of the X(1560) are
consistent with those of the #7(1405) and #(1475) as given
in Ref. [17] within 2.00 and 1.40, respectively. Present
statistics do not allow us to conclusively determine if the
X(1560) is the same state as the 7(1405)/5n(1475) or a new
meson. More statistics in this analysis and an amplitude
analysis of J/y — yna°z° and J /y — yK3K 2" processes
may help to understand the nature of the X(1560).
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