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We clarify the higher-dimensional origin of a class of dyonic gaugings of D ¼ 4 N ¼ 8 supergravity
recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal
supergravity arises from consistent truncation of massive IIA supergravity on S6, and its magnetic coupling
constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-
dimensional anti–de Sitter space ðAdS4Þ massive type IIA vacua. We identify the corresponding three-
dimensional conformal field theory ðCFT3Þ duals as super-Chern-Simons-matter theories with simple
gauge group SUðNÞ and level k given by the Romans mass. In particular, we find a critical point that uplifts
to the first explicit N ¼ 2 AdS4 massive IIA background. We compute its free energy and that of the
candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect
agreement. This provides the first AdS4=CFT3 precision match in massive type IIA string theory.
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Introduction.—Supergravity theories, the supersymmet-
ric extensions of general relativity, come in two varieties:
gauged and ungauged. The former, unlike the latter, typi-
cally include non-Abelian gauge groups and a scalar
potential. Gauged supergravities whose scalar potentials
have supersymmetric anti–de Sitter (AdS) critical points are
particularly interesting since they can provide insights into
the strong coupling behavior of superconformal field the-
ories (CFTs) through theAdS=CFTcorrespondence [1]. The
relevant gauged supergravities should arise as consistently
truncated compactifications of D ¼ 10 or D ¼ 11 super-
gravity. Only if consistency holds will their AdS vacua (and
any other solution) uplift to string orM-theory backgrounds
on which AdS=CFT can be formulated precisely.
Consider, for instance, the SO(8) gauging of the max-

imally supersymmetric, N ¼ 8, supergravity in D ¼ 4 [2].
It arises from consistent truncation ofM theory on S7 [3,4].
All its supersymmetric vacua uplift to four-dimensional anti
de–Sitter space ðAdS4Þ AdS4 × S7 M-theory backgrounds,
some of which have known field theory duals. For example,
the central critical point uplifts to the Freund-Rubin
solution of D ¼ 11 supergravity, which is dual to the
ABJM superconformal field theory [5]: a super-Chern-
Simons theory with nonsimple gauge group UðNÞ × UðNÞ
at (low) levels k and −k. The SO(8) gauging of Ref. [2] is
purely electric, in the sense that it only involves the vectors
that appear in the Lagrangian, and not their magnetic duals.
It has been recently pointed out that, more generally,
D ¼ 4 N ¼ 8 gauged supergravities often admit dyonic
gaugings [6,7]. These are characterized by a dimensionless
parameter, either continuous or discrete, that determines the
linear combination of electric and magnetic vectors, in the
adjoint of the gauge group, that participate in the gauging.

This parameter shows up in the couplings of the gauged
supergravity, particularly in the scalar potential.
The questions arise: do these N ¼ 8 dyonic gaugings

enjoy a string or M-theory origin, or are they just a four-
dimensional artifact? And, closely related for supergravities
with supersymmetric AdS vacua, are these dual to any three
dimensional conformal field theories (CFT3s)? In this note
we show that these questions have precise answers for the
dyonic gauging of a group closely related to SO(8): its
contraction ISOð7Þ ¼ SOð7Þ⋉R7. We find that ISO(7)-
dyonically gauged N ¼ 8 supergravity arises as a consis-
tent truncation of massive type IIA supergravity [8] on the
six sphere, with the magnetic coupling constant identified
upon reduction with the Romans mass. This gauged
supergravity has AdS critical points that uplift to new
AdS4 × S6 backgrounds, with deformed metrics on the S6

and various amounts of supersymmetry. We also give
quantitative evidence that massive IIA string theory on
these backgrounds is dual to the simplest possible type of
superconformal Chern-Simons theories—those, first con-
sidered by Schwarz [9] as potentially relevant for holog-
raphy, with a simple gauge group SUðNÞ, adjoint matter,
and level k. As anticipated in Ref. [9] (see also Ref. [10]),
the level coincides with the quantized Romans mass. The
D ¼ 4 magnetic coupling m, the D ¼ 10 Romans mass
F̂ð0Þ, and the level k of the CFT3 duals are thus related by

m ¼ F̂ð0Þ ¼ k=ð2πlsÞ; ð1Þ

where ls ¼
ffiffiffiffi
α0

p
is the string length.

Dyonic ISO(7)-gauged supergravity.—The Romans
mass is known to induce magnetic gaugings and mass
terms for the Neveu–Schwarz (NS) two-form in N ¼ 2
compactifications of massive IIA on Calabi-Yau manifolds
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with fluxes [11,12]. Nonsemisimple gaugings also occur
frequently in this context. Our construction can thus be
regarded as an N ¼ 8 extension of those N ¼ 2 models.
Magnetic couplings and nontrivial tensors in four dimen-
sions come hand-in-hand, and the embedding tensor
formalism [13], which we use, naturally incorporates both
systematically.
The N ¼ 8 family of ISO(7) gaugings is characterized

completely by an embedding tensor ΘM
α of the form [14]

Θ½AB�CD ¼ 2δC½AθB�D; Θ½AB�C
D ¼ 2δ½AD ξ

B�C: ð2Þ

We have split the adjoint index α of SL(8) and fundamental
index M of E7ð7Þ into fundamental SL(8) indices
A ¼ 1;…; 8, and have defined

θ ¼ g diagðI7; 0Þ; ξ ¼ m diagð07; 1Þ; ð3Þ

with g and m the electric and magnetic coupling constants.
The dyonically gauging parameter mentioned in the intro-
duction is simply the ratio c ¼ m=g. For g ≠ 0, this family
of ISO(7) gaugings is discrete. It contains, in fact, only two
members [7]: the purely electric case m ¼ 0 constructed
long ago [15], and them ≠ 0 case (all m ≠ 0 supergravities
happen to be equivalent [7]). This form of the embedding
tensor implies that the SO(7) subgroup of ISO(7) is gauged
electrically only, while the seven translations are gauged
dyonically.
Using Eqs. (2), (3) in the general formalism of Ref. [13],

we have constructed the bosonic sector of the N ¼ 8
theory [16]. This contains the 70 scalars of E7ð7Þ=SUð8Þ,
which can be packed in the symmetric matrix MMN; the
ISO(7) electric (and magnetic) vectors AIJ, AI (and ~AIJ,
~AI), I ¼ 1;…; 7, with field strengths HIJ

ð2Þ, HI
ð2Þ; and

other higher-rank tensors, including two-forms BI , required
by the vector-tensor hierarchy. The electrically gauged
SO(7) rotations lead to a conventional HIJ

ð2Þ, whereas
the field strengths of the dyonically gaugedR7 translations,

HI
ð2Þ ¼ dAI − gδJKAIJ ∧ AK þ 1

2
mAIJ ∧ ~AJ þmBI; ð4Þ

include couplings to the magnetic vectors and to BI. The
two-forms acquire a topological mass gmδIJBI ∧ BJ,
similar to that in Ref. [12]. Finally, the scalar covariant
derivatives develop dyonic couplings, as expected, and the
scalar potential features the terms in g2 of the purely electric
gauging [15] plus new gm and m2 terms.
It is often insightful to consider smaller sectors of the

N ¼ 8 theory. A useful one is obtained by truncating
bosons and fermions to the singlets under the SU(3)
subgroups of the gauge group ISO(7) and R-symmetry
group SU(8), respectively. This truncation results in an
N ¼ 2 subsector, including one vector multiplet and one
hypermultiplet, with a Uð1Þ × SOð1; 1Þ gauging in the
hyper sector. A further consistent truncation of this sector

retains only the metric and the three scalars neutral under
the gauge group, and is described by the Lagrangian

e−1L ¼ R − 2ð∂ϕÞ2 − 3

2
ð∂φÞ2 − 3

2
e2φð∂χÞ2 − V; ð5Þ

where the scalar potential reads

V ¼ 1

2
g2ðe4ϕ−3φð1þ e2φχ2Þ3 − 12e2ϕ−φð1þ e2φχ2Þ− 24eφÞ

− gme4ϕþ3φχ3þ 1

2
m2e4ϕþ3φ: ð6Þ

For gm ≠ 0, this potential has three AdS critical points.
Two of them have already been predicted [14] by a different
method [14,17]; they are nonsupersymmetric, unstable,
and, respectively, preserve SO(7) and SO(6) symmetry
when embedded in the fullN ¼ 8 ISO(7) theory. Curiously
[14], their mass spectra coincide with those of the SOð7Þ�
and SUð4Þ− points of the SO(8) gauging. In addition, we
find a new critical point located at

e6φ ¼ 64

27
g2m−2; e6ϕ ¼ 8g2m−2; χ3 ¼−

1

8
g−1m: ð7Þ

When embedded in the fullN ¼ 8 ISO(7) theory, this point
preserves N ¼ 2 supersymmetry and SUð3Þ × Uð1Þ
bosonic symmetry. We have calculated its mass spectrum:
again, it coincides with the spectrum [18] of the
N ¼ 2SUð3Þ × Uð1Þ point of the SO(8) gauging.
Consistent truncation from massive IIA.—We have built

the D ¼ 10 embedding of the full ISO(7) theory using a
similar strategy employed to embed the electric D ¼ 4
SO(8) gauging into D ¼ 11 [3,4] or the D ¼ 5 SO(6)
gauging into type IIB [19]. First, redefinitions of the IIA
fields are performed that leave only a subgroup SO(1,3) of
the full SO(1,9) local Lorentz symmetry manifest. Second,
the supersymmetry variations of these redefined fields are
manipulated so that they conform to the E7ð7Þ-covariant
vector-tensor hierarchy, and “generalized vielbeine” can be
read off. Finally, an ansatz is proposed that relates the
generalized vielbeine and the hierarchy-compatible vectors
and tensors with theD ¼ 4 coset representative and vectors
and tensors of the ISO(7) theory, together with geometrical
data from S6. We have verified the consistency of this
ansatz at the level of the supersymmetry variations: all S6

data drop out, yielding the variations of the D ¼ 4 ISO(7)
theory.
Here we will only give the final result. Further details of

this long analysis will be presented separately [20].
Leaving also for Ref. [20] the rather long expression for
the Ramond-Ramond (RR) three-form Âð3Þ, the exact,
nonlinear consistent embedding reads, in the type IIA
Einstein frame conventions of Ref. [21],
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dŝ210 ¼ Δ−1ds24 þ gmnDymDyn;

e−ð3=2Þϕ̂ ¼ −gmnAmAn þ ΔμIμJMI8J8;

B̂ð2Þ ¼ −μI
�
BI þ 1

2
AIJ ∧ ~AJ

�
− g−1 ~AI ∧ DμI

þ 1

2
BmnDym ∧ Dyn;

Âð1Þ ¼ −μIAI þ AmDym; ð8Þ

with Δ2 ¼ ðdet gmnÞ=ðdet g∘mnÞ, where g
∘
mn is the round,

SO(7)-symmetric metric on S6. The μI parametrize S6 as
the locus μIμI ¼ 1 in R7, and ym, m ¼ 1;…; 6, are the S6

angles. These have covariant derivatives

Dym ≡ dym þ 1

2
gKm

IJA
IJ; DμI ≡ dμI − gAIJμJ; ð9Þ

with Km
IJ ¼ 2g−2g

∘mn
μ½I∂nμJ� the Killing vectors of g

∘
mn.

Finally, the internal (inverse) metric and forms in Eq. (8)
are given in terms of SL(7)-covariant blocks of the D ¼ 4
scalar matrix MMN and S6 quantities as

gmn ¼ 1

4
g2ΔKm

IJK
n
KLM

IJKL;

Am ¼ 1

2
gΔgmnKn

IJμKM
IJK8;

Bmn ¼ −
1

2
ΔgmpK

p
IJ∂nμ

KMIJ
K8;

Amnp ¼ AmBnp þ
1

8
gΔgmqK

q
IJK

KL
npMIJ

KL: ð10Þ

We have included the expression for the internal compo-
nents of Âð3Þ, and have defined KIJ

mn ¼ 4g−2∂ ½mμI∂n�μJ.

The electric coupling g appears explicitly in these
formulas, whereas the magnetic coupling m does not. As
usual in spherical reductions, g becomes identified with
the S6 inverse radius and must be nonvanishing for
Eqs. (8)–(10) to be well defined. In order to see that m
descends from the Romans mass F̂ð0Þ, we compute from
Eq. (8) the RR field strength [21] F̂ð2Þ ¼ dÂð1Þ þ F̂ð0ÞB̂ð2Þ,
and similarly for the other forms. We obtain F̂ð2Þ ¼
−μIHI

ð2Þ þ � � �, with

HI
ð2Þ≡dAI−gδJKAIJ∧AKþ1

2
F̂ð0ÞAIJ∧ ~AJþF̂ð0ÞBI ð11Þ

and the dots denoting scalar-dependent terms. This expres-
sion coincides with the D ¼ 4 field strength (4) provided
the first identification in Eq. (1) holds. We have inves-
tigated further the correspondence betweenm and F̂0 in the
SU(3) and other invariant sectors, where explicit expres-
sions for the covariant derivatives and potential become
available. Perfect matching between D ¼ 4 and D ¼ 10 is
always found via Eqs. (8)–(10) provided Eq. (1) holds.
Being independent of m, the formulas (8)–(10) hold for

m ¼ 0 as well, and thus also realize the embedding of the
electric ISO(7) gauging [15] in massless IIA argued in
Ref. [22]. Also, the discreteness [7] of the family of dyonic
ISO(7) gaugings can be understood directly in D ¼ 10: all
nonvanishing values of F̂ð0Þ are classically equivalent.
A new N ¼ 2AdS4 massive IIA solution.—The consis-

tent embedding (8)–(10) allows one to uplift any solution of
ISO(7) supergravity to massive IIA, preserving supersym-
metry in the process if present. We have employed these
formulas to uplift the critical point (7) to obtain the first
explicit, analytic N ¼ 2 AdS4 solution of massive IIA
supergravity we are aware of. In the IIA conventions of
Ref. [21], the Einstein frame solution reads

dŝ210 ¼ L2ð3þ cos 2αÞ1=2ð5þ cos 2αÞ1=8
�
ds2ðAdS4Þ þ

3

2
dα2 þ 6sin2α

3þ cos 2α
ds2ðCP2Þ þ 9sin2α

5þ cos 2α
η2
�
;

eϕ̂ ¼ eϕ0
ð5þ cos 2αÞ3=4
3þ cos 2α

;

L−2e−ð1=2Þϕ0Ĥð3Þ ¼ 24
ffiffiffi
2

p sin3α
ð3þ cos 2αÞ2 J ∧ dα;

L−3eð1=4Þϕ0F̂ð4Þ ¼ 6volðAdS4Þ þ 12
ffiffiffi
3

p 7þ 3 cos 2α
ð3þ cos 2αÞ2 sin

4αvolðCP2Þ þ 18
ffiffiffi
3

p ð9þ cos 2αÞsin3α cos α
ð3þ cos 2αÞð5þ cos 2αÞ J ∧ dα ∧ η;

L−1eð3=4Þϕ0F̂ð2Þ ¼ −4
ffiffiffi
6

p sin2α cos α
ð3þ cos 2αÞð5þ cos 2αÞ J − 3

ffiffiffi
6

p ð3 − cos 2αÞ
ð5þ cos 2αÞ2 sin αdα ∧ η; ð12Þ

with L2 ≡ 2−ð5=8Þ3−1g−ð25=12Þmð1=12Þ and eϕ0≡
21=4g5=6m−ð5=6Þ, and the Romans mass given by the first
equality in Eq. (1), namely, F̂ð0Þ ¼ 3−ð1=2ÞL−1e−ð5=4Þϕ0 . As a
check on our uplifting formulas, we have explicitly verified
that Eq. (12) solves all the massive IIA field equations.
The metrics on AdS4 and Fubini-Study on CP2 are

normalized so that the Ricci tensor equals −3 and 6 times

the metric, respectively. The angle 0 ≤ α ≤ π locally
foliates S6 with S5 leaves regarded as Hopf fibrations over
CP2, with fibers squashed as a function of α. Also, J is the
Kähler form of CP2 and η ¼ dψ þ σ, with 0 ≤ ψ ≤ 2π a
coordinate along the fiber and dσ ¼ 2J. The local internal
metric can be alternatively regarded as one on an S2 bundle
over CP2, with S2 fibers parametrized by ðα;ψÞ and S6
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topology for the total space. The local geometry extends
globally over S6 in a smooth manner. The vector ∂ψ is
Killing, and also a symmetry of the supergravity forms, so
that the full solution exhibits a cohomogeneity-one
SUð3Þ × Uð1Þ symmetry. TheN ¼ 2 supersymmetry man-
ifests itself in the form of a local SU(2) structure, or global
SUð3Þ × SUð3Þ structure, of the type discussed in
Refs. [23,24]. Finally, a wider class of N ¼ 2 solutions
with other topologies or possibly singular may be obtained
from Eq. (12) by replacingCP2 with any positive-curvature
Kähler-Einstein manifold or orbifold.
The supergravity solution (12) also extends to a well-

defined string background upon flux quantization. On our
topologically S6 solution, flux quantization conditions can
only be imposed on F̂ð0Þ and F̂ð6Þ. These are, respectively,
given by the second relation in Eq. (1) and

−1
ð2πlsÞ5

Z
S6
eð1=2Þϕ̂�̂F̂4 þ B̂2 ∧ dÂ3 þ

1

6
F̂0ðB̂2Þ3 ¼ N;

ð13Þ
with N integer and ðB̂2Þ3 ¼ B̂2 ∧ B̂2 ∧ B̂2. From an
explicit evaluation of this integral using Eq. (12) and from
Eq. (1), it is straightforward to solve for the classical
parameters L, eϕ0 (or g, m) in terms of the quantum
numbers N, k.
For later comparison with field theory, we conclude this

section with the calculation of the gravitational free energy
of our solution. This is inversely proportional to the
effective D ¼ 4 Newton’s constant, F ¼ π=ð2G4Þ [25],
which can be read off by inserting Eq. (12) in the ten-
dimensional action. Denoting by e2A the warp factor in the
metric of Eq. (12), and expressing the result in terms of N
and k, a straightforward calculation gives

F ¼ 16π3

ð2πlsÞ8
Z
S6
e8Avol6 ¼

π

5
21=331=6N5=3k1=3: ð14Þ

Dual field theories.—We now ask whether there are large
N 3d conformal field theories dual to the AdS4 massive IIA
solutions obtained upon uplift of critical points of the
ISO(7) supergravity. Because the internal manifold has the
topology of S6, it would be natural for these AdS4 solutions
to arise as the near horizon geometries of D2 branes in
smooth backgrounds of massive IIA. Such backgrounds,
which must have curvature and RR and NS fields to be
mutually supersymmetric with the D2 branes, have not
been constructed. Nevertheless, we expect dual field
theories with a single SUðNÞ gauge group.
In flat space, the world volume theory of N D2 branes in

massless IIA is the maximally supersymmetric Yang-Mills
theory in three dimensions with SUðNÞ gauge group. It has
7 adjoint scalars and 8 fermions transforming under an
SOð7Þ R symmetry. At low energies, this flows to the M2
brane conformal field theory with SOð8Þ R symmetry. On
the Coulomb branch, the N − 1 massless photons can be
dualized in this three dimensional system to additional
scalars, which complete the SOð8Þ representation. Now, the

presence of the Romans mass (1) induces a Chern-Simons
term on the D2 brane, ðk=4πÞTrðA ∧ F þ 2

3
A ∧ A ∧ AÞ.

By itself this would break all supersymmetry. However, we
may take this together with additional couplings and
preserve various numbers of supercharges, up to N ¼ 3.
We will be more interested in the N ¼ 2 Chern-Simons

deformation. In N ¼ 2 notation, the maximal 3D super-
Yang-Mills theory has an adjoint vector multiplet (con-
taining a real scalar and a complex fermion) and 3 chiral
multiplets (containing a complex scalar and fermion).
There is a superpotential W ¼ TrX½Y; Z�. The Chern-
Simons deformation gives a mass to all fields in the vector
multiplet. This leaves 6 real massless scalars. This theory
has Uð1ÞR × SUð3Þ symmetry, like the massive IIA sol-
ution (12). The superpotential fixes the R charge of the
adjoint chiral multiplets to be 2=3.
These field theories with a single gauge group and only

adjoint matter are of the type explored by Schwarz in [9] as
possible duals to AdS4 string theory backgrounds. We will
now give strong evidence that at least some of these
simplest 3d theories are dual to the massive IIA uplifts
of the AdS critical points of ISO(7) dyonic supergravity.
We will match the gravitational free energy (14) of our
solution (12) to the free energy of the N ¼ 2 Chern-
Simons-matter theory that we have just described.
The gravitational free energy is dual to the 3d

F ¼ − logZ, where Z is the partition function of the
SCFT on a Euclidean S3. In general, F is impossible to
calculate in practice for strongly coupled field theories.
However,N ¼ 2 supersymmetry allows one to localize the
infinite dimensional path integral to a finite dimensional
integral over only supersymmetric configurations [26–28].
The result is an integral, which is directly determined by the
UV Lagrangian, over the eigenvalues of the adjoint scalar
in the vector multiplet, i.e., Coulomb branch parameters λi,

Z¼
Z YN

i¼1

dλi
2π

YN
i<j¼1

�
2sinh2

�
λi−λj
2

��

×
YN
i;j¼1

�
exp

�
l
�
1

3
þ i
2π

ðλi−λjÞ
���

3

eðik=4πÞ
P

λ2i ; ð15Þ

where
P

λi ¼ 0 since suðNÞ is traceless. The 1=3 that
appears in the argument of lðzÞ ¼ −z logð1 − e2πizÞ þ
ði=2Þ½πz2 þ ð1=πÞLi2ðe2πizÞ� − ðiπ=12Þ results from the
chiral multiplets having R charge of 2=3. This result is
exact, even at finite N.
To compare to gravity, we want to take the large N limit.

Hence it is natural to describe the eigenvalues in terms of
their density ρðλÞ. It is easy to check that the radius of
curvature in string units of the string frame metric corre-
sponding to (12) is of the order of ðN=kÞ1=6; thus, the
supergravity solution is valid whenN ≫ k. In that limit, the
range of λ will scale as λ ¼ Nα½xþ iyðxÞ�, with α to be
determined [29,30]. One finds an effective action for the
eigenvalue density at large N
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S ¼ N1þ2α

4π
k
Z

dxρðxÞð2xyðxÞ − iðx2 − y2ÞÞ

þ 32

27
π2N2−α

Z
dx

ρ2ðxÞ
1þ y0ðxÞ : ð16Þ

The existence of a saddle point requires the two terms to
balance, so α ¼ 1=3 as in [30]. The saddle point equation is
algebraic, and one can easily find the solution. The result
for the free energy is then

F ¼ 313=6π

40

�
32

27

�
2=3

k1=3N5=3; ð17Þ

in exact agreement with the gravitational result (14).
Final comments.—This type of SCFTs with a simple

gauge group and only adjoint matter has also been inves-
tigated in [31]. In fact, if we added a mass deformation
TrZ2, our N ¼ 2 theory would flow to the N ¼ 3 point
discussed there. We conjecture that this field theory is dual
to the N ¼ 3AdS4 × S6 massive IIA solution that arises
from uplift via (8)–(10) of the N ¼ 3 point [32] of the
dyonic ISO(7) theory. Interestingly, [31] demonstrated that
there are light higher spin operators and an exponential
growth in the spectrum of such simple theories with a larger
number of adjoints. Thus the examples we have found
appear to be the only possible such SCFTs with weakly
curved supergravity duals.
Consistent truncations of D ¼ 11 and IIB supergravities

on Sn down tomaximal supergravities have been extensively
studied, with the usual n ¼ 7; 4; 5 cases singled out [33–36]
as special. Nowwe can add a new consistent IIA, n ¼ 6 case.
An interesting aspect in which the present n ¼ 6 case differs
from n ¼ 7; 4; 5 is that, although the resultingD ¼ 4 ISO(7)
theory does not have an N ¼ 8 vacuum that can possibly
uplift to a(n in fact inexistent [37]) maximally supersym-
metric AdS4 × S6 type IIA background, a maximally super-
symmetric truncation does still exist at the level of the
supergravities. Similarly, the question about the existence of
a massive IIA truncation on S4 to maximal D ¼ 6 super-
gravity could be addressed using the same approach.
The dyonic deformation of the ISO(7) gauging is directly

inherited from a deformation that already exists in the higher
dimension. The embedding of D ¼ 4 dyonic gaugings inM
theorywould require a different strategy, due to the absence of
similar deformations of conventional D ¼ 11 supergravity.
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