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A long-standing problem in quantum mechanics is the minimum number of observables required for the
characterization of unknown pure quantum states. The solution to this problem is especially important for
the developing field of high-dimensional quantum information processing. In this work we demonstrate
that any pure d-dimensional state is unambiguously reconstructed by measuring five observables, that is,
via projective measurements onto the states of five orthonormal bases. Thus, in our method the total number
of different measurement outcomes (5d) scales linearly with d. The state reconstruction is robust against
experimental errors and requires simple postprocessing, regardless of d. We experimentally demonstrate
the feasibility of our scheme through the reconstruction of eight-dimensional quantum states, encoded in
the momentum of single photons.
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With the development of high-dimensional quantum
information processing techniques [1–5], the total dimen-
sion d of quantum systems employed in experiments
increases at a fast pace. Since the total number M of
measurement outcomes required by conventional quantum
tomography methods scales with d2 [6–18], it is of para-
mount importance that the search for tomographic protocols
be especially adapted to higher dimensions, that is, schemes
that require a lower M and a reduced complexity of the
postprocessing methods. Thus, it is possible to consider
a priori information about the set of states to be charac-
terized. For example, rank-r quantum states are recon-
structed, with a high probability, with M of the order of
rdðlog dÞ2 via compressed sensing techniques [19]. Nearly
matrix product states are determined withM linear in d and
postprocessing that is polynomial in the system size [20].
Permutationally invariant quantum states of n qubits
(d ¼ 2n) are reconstructed with M ¼ ½logðdÞ þ 2�d [21].
In this work we study the characterization of unknown

pure quantum states via projective measurements. In 1933,
Pauli [22] considered the unambiguous characterization of
pure states from probability distributions generated by the
measurement of a fixed set of observables. It has been shown
that the number of observables must be larger than 3 for
d ≥ 9 [23]. Here, we show that almost all pure quantum
states can be characterized by a set of probability distribu-
tions generated by four observables, that is, projective
measurements onto a fixed set of four basesBi (i ¼ 1;…; 4)
independently of the dimension d. In our case M ¼ 4d,
which is an improvement compared with quantum tomog-
raphy based on mutually unbiased bases [10], SIC-POVM
[11,12] and compressed sensing [19], which require M ¼
dðdþ 1Þ, M ¼ d2, and M of the order of dðlog dÞ2,

respectively. Pure states can also be reconstructed via the
expectation values [24] of a fixed set of observables. In this
case, 4d − α observables are required at least, where α is a
quantity that scales with the logarithm of the dimension.
Consequently, the value ofM is larger than in our proposal.
The exception to our first characterization is a sta-

tistically unlikely null measure set Ω of pure states.
Such states can be characterized by adding a fifth meas-
urement basis B0, which detects whether a pure state is inΩ
or not. Thus, it is possible to define a new set of four bases
to characterize the state. These bases are similar to Bi but
defined on a lower dimensional subspace. Thereby, the
set of pure states is decomposed into a finite number of
disjoint sets of states such that each set is reconstructed
with a particular set of five bases. Thus, any pure state can
be reconstructed with projective measurements on no more
than five bases, that is, M ¼ 5d. An interesting feature of
each set of five bases is that they allow us to certify the
initial assumption on the purity of the state to be recon-
structed. This class of certification can also be achieved by
reconstructing pure states via expectation values [25] but at
the expense of a much higher M than in our proposal.
We demonstrate the feasibility of our tomographic

scheme with the experimental characterization of eight-
dimensional quantum states encoded on the transverse
momentum of single photons. The preparation of the states
is affected by white noise, which renders the states slightly
impure, and the detection process by Poisson noise. In spite
of these conditions the obtained fidelities are higher than
0.96� 0.03 withM ¼ 40. This result is in agreement with
numerical simulations that consider realistic noise levels
in the preparation of the unknown state as well as in the
detection process. Our work shows that the effective
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characterization of unknown high-dimensional pure quan-
tum states by means of a reduced number of measurement
outcomes is feasible.
A d-dimensional quantum state can be expanded as ρ ¼

ð1=dÞIþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðd − 1Þ=2d�p P
d2−1
j¼1 rjTj, where I is the identity

operator, rj ¼ TrðρTjÞ form the generalized Bloch vector,
and Tj are a traceless, Hermitian representation of the
generators of the Lie algebra suðdÞ such as the generalized
Gell-Mann basis [26]. This consists of d − 1 diagonal
operators Tα and dðd − 1Þ nondiagonal operators Tk;m

and ~Tk;m. The latter are given by Tk;m ¼ jkihmj þ jmihkj
and ~Tk;m ¼ −ijkihmj þ ijmihkj, where 0 ≤ k < m ≤ d − 1.
Any pure state jΨi ¼ P

d−1
k¼0 ckjki satisfies the following

set of dðd − 1Þ=2 equations

2cmc�k ¼ TrðjΨihΨjTm;kÞ þ iTrðjΨihΨj ~Tm;kÞ: ð1Þ
Interestingly, d − 1 of the above equations univocally
characterize a certain dense set of pure states. We choose
the set of d − 1 equations with m ¼ kþ 1 that allows us to
solve Eq. (1) recursively, up to a null measure set of pure
states. In order to calculate the traces of Eq. (1) we consider
rank-1 projective measurements associated with the eigen-
vectors of Tk;kþ1 and ~Tk;kþ1 with eigenvalues �1, that is,
M ¼ 4d. These 4d vectors can always be sorted in four
orthogonal bases. For d ≥ 3 these bases are given by

B1 ¼ fj2νi � j2νþ 1ig; B3 ¼ fj2νþ 1i � j2νþ 2ig;
B2 ¼ fj2νi � ij2νþ 1ig; B4 ¼ fj2νþ 1i � ij2νþ 2ig;

ð2Þ
where the addition of labels is carried out modulo d and
ν ∈ ½0; ðd − 2Þ=2�. For odd dimensions we considered the
integer part of ðd − 2Þ=2 and every basis is completed
with jdi. Defining pk

� ( ~pk
�) as the probability of projecting

the state jΨi onto the eigenvector of Tk;kþ1 ( ~Tk;kþ1) with
eigenvalue �1, Eq. (1) becomes 2ckc�kþ1 ¼ Λk, where

Λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd−1Þ=2dp ½ðpkþ−pk

−Þþ ið ~pkþ− ~pk
−Þ�. Table I asso-

ciates bases Bi with the eigenvectors of Tk;kþ1 and ~Tk;kþ1

with eigenvalues �1 and probabilities pk
� and ~pk

�, respec-
tively. The equations 2ckc�kþ1 ¼ Λk can be recursively
solved leading to

ck ¼
8<
:

c0
Qk=2−1

i¼0

Λ�
2iþ1

Λ2i
; k > 0 even;

Λ�
0

2c0

Qðk−3Þ=2
i¼0

Λ�
2iþ2

Λ2iþ1
; k > 1 odd;

ð3Þ

where c1 ¼ ðΛ�
0=2c0Þ and c0 is determined by normaliza-

tion. If one of the coefficients ck vanishes then the system

of equations cannot be recursively solved. However, the
remaining equations and the normalization condition are
enough to reconstruct the state. This also holds in the case of
two consecutive vanishing coefficients. For two noncon-
secutive vanishing coefficients the system of equations has
infinite solutions. For instance, in d ¼ 4 the set of equations
is 2c0c�1 ¼ Λ0, 2c1c�2 ¼ Λ1, 2c2c�3 ¼ Λ2, and 2c3c�4 ¼ Λ3.
If c0 ¼ c2 ¼ 0 or c1 ¼ c3 ¼ 0 then all left sides vanish.
Thus, there are states that cannot be singled out via Bk.
These states form a manifold Ω of dimension d − 2 and,
consequently, are statistically unlikely. This means that if
pure states are randomly selected then with probability 1
they would be out of Ω. Thus, a total of 4d measurement
outcomes, corresponding to projective measurements onto
states of bases Bk, are informationally complete on the set
of pure states up to the null measure set Ω.
The introduction of a fifth basis B0, the canonical basis

that is the first to be measured, allows us to determine
whether a state belongs to the manifold Ω or not depending
on the number of vanishing coefficients detected. If the
state is in Ω and has m null coefficients, then we can
reconstruct the state into the subspace associated with the
d −m nonvanishing coefficients. This is done with the
bases Bk (k ¼ 1; 2; 3; 4) but defined for a subspace of
dimension d −m. Thereby, any pure state can be recon-
structed via projective measurements onto, at most, five
orthonormal bases or equivalently with M ≤ 5.
In the N qubits case, separable bases B0, B1, and B2

correspond to the eigenstates of the local operators

σð1Þz ⊗ … ⊗ σðNÞ
z , σð1Þz ⊗ … ⊗ σðN−1Þ

z ⊗ σðNÞ
x , and σð1Þz ⊗

… ⊗ σðN−1Þ
z ⊗ σðNÞ

y , respectively. Entangled bases B3 and
B4 can be mapped onto bases B1 and B2, respectively, by
applying the quantumFourier transform [27–29] twice. This
can be optimally implemented with the order of N2 [30]
Hadamard and conditional two-qubit phase gates. Thus, our
tomographic scheme is reduced to simple local measure-
ments and the quantum Fourier transform. The latter has
been experimentally realized in photonic qubits [31],
nuclear magnetic resonance [32,33], neutral molecules
[34], superconducting qubits [35], and trapped ions [36–38].
Measurements on the set of bases allow us to certify the

assumed purity of the unknown state. A state ρ is
pure if and only if the equation jρk;lj2 ¼ jρk;k∥ρl;lj holds
for every k; l ¼ 0;…; d − 1. Remarkably, these conditions
for l ¼ kþ 1 are enough to ensure that ρ determines a pure
state. Indeed, given that ρ is a quantum state then ρ ¼ AA†

for a given operator A. So, every entry of ρ satisfies
ρk;l ¼ vk · vl, where vk is the kth column of A. If
l ¼ kþ 1 the d − 1 equations jρk;kþ1j2 ¼ jρk;k∥ρkþ1;kþ1j
hold if and only if vectors vk and vkþ1 are parallel for
every k ¼ 1;…; d − 1. Consequently, ρ is pure. The same
holds for any set of five bases.
Tomographic schemes reconstruct quantum states in

matrix space. Since quantum states form a null measure
set in matrix space, noisy measurement results lead to
matrices that do not represent quantum states. To overcome
this problem experimental data are postprocessed with

TABLE I. Association between the four bases, suðdÞ gener-
ators, and transition probabilities.

B1 (B3) Tk;kþ1; k even (odd) pk
�; k even (odd)

B2 (B4) ~Tk;kþ1; k even (odd) ~pk
�; k even (odd)
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maximum likelihood estimation [13]. An important feature
of our method is that it delivers a vector of the underlying
Hilbert space for any set of noisy probabilities and the
normalization of this vector is the only procedure required
to obtain a pure state.
The scheme proposed here is based on a priori informa-

tion about the purity of the state to be reconstructed. This
condition is difficult to realize in current experiments.
However, it is possible to generate nearly pure states such as

ρ ¼ ð1 − λÞjΨihΨj þ λ

d
I: ð4Þ

Here, the generation process is affected by white noise,
whichmixes the target pure state jΨihΨjwith themaximally
mixed state I=d. The strength of the process is given by
the real number λ. This model is in agreement with our
experimental setup. The following lower bound for the
fidelity holds:

F ≥ 1 − Δp
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

d

r Xd−1
k¼0

σk
σk þ σkþ1

; ð5Þ

where σk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
k − λ=d

q
, fp0

kgk¼0;…;d−1 is the probability
distribution generated by measurements on the canonical
basis B0 andΔp is the maximal amount of noise introduced
by the photodetection process. For a uniform state (i.e.,
jckj2 ¼ 1=d for every k ¼ 0;…; d − 1) of a composite
system of N qubits we obtain F ≥ 1 − Δp2N−1. Thus, to
keep a constant large lower bound while increasing the
number of qubits,Δpmust decrease as 21−N . Figure 1 shows
the average fidelity F̄ ¼ R jhΨjΨestijdΨ on the complete
Hilbert space and the square root of its variance [39] as
functions of N considering white and Poisson noises.
Numerical simulations also show the robustness of our
method with respect to λ [40].
The setup employed to implement and test our proposal

is depicted in Fig. 2. The state preparation stage has a
continuous-wave laser operated at 690 nm and an acousto-
optic modulator (AOM). This is used to generate controlled
optical pulses. Optical attenuators (not shown for the sake
of clarity) decrease the mean photon number per pulse to
the single-photon level. Thereafter, single photons are sent
through two transmissive spatial light modulators (SLMs:
SLM1 and SLM2), each one formed by two polarizers,
quarter wave plates (QWP), and a liquid crystal display.
SLM1 and SLM2 work in the amplitude-only and phase-
only modulation configuration, respectively. SLM2 is
placed on the image plane of SLM1, and the eight-
dimensional quantum system is generated with eight
parallel slits addressed on the SLMs. After SLM2 the
non-normalized state of the transmitted photon is given by
jΨi ¼ P7=2

l¼−7=2
ffiffiffi
tl

p
eiϕl jli [43,44], where jli represents the

state of the single photon crossing the lth slit. Here, tl is
the transmission for each slit controlled by SLM1; ϕl is
the phase of each slit addressed by SLM2, and N is a
normalization constant. The different values of tl and ϕl are
configured by the gray level of the pixels in the SLMs [44].
We addressed in the SLMs slits with the width of 2 pixels,

and 1 pixel of separation between them, where each pixel is
a square of 32 μm of side length. Since a three-qubit system
is an eight-dimensional quantum system, state jΨi can be
used to simulate a three-qubit system [45,46]. We generated
the state jΨUi¼ 1ffiffi

8
p ½1;1;1;1;1;1;1;1� with equal real prob-

ability amplitudes, the state jΨGHZi¼ 1
2
½1;0;0;−1;0;1;1;0�

analogous (up to Local Operations and Classical
Communication [47]) to the GHZ state [48], and the W
state jΨWi ¼ 1ffiffi

3
p ½0; 1; 1; 0; 1; 0; 0; 0� [49].

To guarantee the purity of the spatial qudit states, it is nece-
ssary to observe a high visibility in the interference patterns
in the far-field plane of the SLMs [50]. The value of λ can be
obtained from the relation V ¼ ð4 − 4λÞ=ð4 − 3λÞ, where V
is the observed visibility in the far-field plane. In our experi-
mentwe haveV¼0.99�0.009, leading to λ¼0.037�0.033.
Thus, the generated states have a purity of 0.93� 0.05.
In order to realize the projections onto the states of

the five bases Bi we use two additional modulators, SLM3

FIG. 1. Average fidelity F̄ (black squares) and standard devi-
ation (bars) as a function of the number N of qubits (d ¼ 2N).
Here, we considered a white noise level of λ ¼ 0.03 [see Eq. (4)]
and Poisson noise Δp ¼ 0.00081 in the detection process.

FIG. 2 (color online). State generation and projective measure-
ment stages of the experimental setup. A cw laser and an AOM
create single photon pulses, which are transformed by the
computer-controlled (personal computer) SLM1 and SLM2 into
a qudit state. This is projected onto any other qudit state by SLM3
and SLM4 and a pointlike avalanche photodetector (APD). These
are controlled by means of a field programable gate array (FPGA).
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and SLM4, working in the amplitude-only and phase-only
configuration, respectively, and a pointlike avalanche
photodetector [2,50,51]. The SLMs in the projective
measurement stage (see Fig. 1) are addressed with slits
whose amplitudes and phases are defined to implement the
projections required by our method. At the detection plane,
the single-photon detection rate is proportional to the
probability of projection onto initial state (jΨGHZi, jΨUi,
and jΨWi) into the required basis states of Eq. (2) [2,50].
From the experimental data we calculated the probability

distributions associated with the five bases Bi for the three
initial states. With these probability distributions and using
Eq. (1), for the appropriate set of five bases, we obtained a
set of vectors, which were then normalized to obtain the
final reconstructed states. The fidelity Fi ¼ jhΨijΨtheoij
of the initial states with respect to the expected ones
are FGHZ ¼ 0.985� 0.015, FU ¼ 0.96� 0.03, and FW ¼
0.96� 0.03. These were calculated by considering the
effect of the Poisson noise in the detection process and
selecting the highest and smallest fidelity between the
expected state and the estimated state for a particular noisy
set of distributions. For comparison purposes we consider
an experiment with a similar configuration [50] where two
pure states with nonvanishing, real coefficients in d ¼ 8
were reconstructed by means of measurements on mutually
unbiased bases achieving F ¼ 0.91� 0.03 and F ¼
0.92� 0.03. Note that we achieved higher fidelities with
a total of 40 projective measurements instead of 72, as in
the compared case. The states reconstructed with our
method are shown in Fig. 3. Figures 3(a), 3(c), and 3(e)

exhibit the real parts of the reconstructed density matrices,
compared with the expected ones (insets). Figures 3(b),
3(d), and 3(f) show the imaginary parts of the respective
matrices, compared with the theoretical predictions (insets).
We have shown that projections onto the eigenstates of a

fixed set of four rank-d observables characterize all pure
states of a d-dimensional quantum system up to a null
measure set of dimension d − 2. These 4d measurements
compare favorably with the typical d2 scaling of measure-
ments of known generic tomographic methods. The addi-
tion of a fifth observable allows us to detect whether a state
belongs to the null measure set or not. If this is the case,
then it is always possible to construct a new set of four
observables that determines unambiguously the state. All
sets of five observables allow us to certify whether the
initial assumption on the purity of the state holds or not. We
experimentally demonstrated the feasibility of our scheme
in the characterization of states in d ¼ 8. We achieved high
fidelities by means of a reduced number of measurement
outcomes and a simple postprocessing method.
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FIG. 3 (color online). Tomographic reconstruction for each of the initial spatial qudits states. Panels (a), (c), and (e) show the real parts
for the reconstructed states jΨGHZi, jΨUi, and jΨWi, respectively. Imaginary parts are depicted in (b), (d), and (f). Each inset corresponds
to the real and imaginary parts of the expected theoretical probabilities for the reconstruction of the initial states.
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