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Adsorption-desorption processes are ubiquitous in physics, chemistry, and biology. Models usually
assume hard particles, but within the realm of soft matter physics the adsorbing particles are compressible.
A minimal 1D model reveals that softness fundamentally changes the kinetics: Below the desorption time
scale, a logarithmic increase of the particle density replaces the usual Rényi jamming plateau, and the
subsequent relaxation to equilibrium can be nonmonotonic and much faster than for hard particles. These
effects will impact the kinetics of self-assembly and reaction-diffusion processes.
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A broad range of physical, chemical, and biological
systems feature adsorption processes in which particles are
randomly deposited on an extended substrate [1]. Possible
substrates include polymers [2], crystalline or amorphous
surfaces [3], and membranes, while the particles can be
small molecules, colloidal particles, macromolecules such
as proteins [4,5], or even larger objects such as cells. In
phenomenological models [6–8], the particles can also
represent modified states of the substrate [6] or complexes
formed with the substrate [8]. Generally, the filling of the
substrate slows as the coverage increases, due to substrate
saturation as well as jamming. Here, jamming refers to the
process of reaching configurations where all gaps are
smaller than the particles, prohibiting further filling.
Jammed configurations constitute a nonthermal ensemble
that has received considerable theoretical interest [9,10].
However, jamming is often only transient, as a small
desorption rate allows the system to eventually reach
thermal equilibrium in a nontrivial relaxation process
during which the system loses memory of its jammed
state [11–13].
Adsorption-desorption models usually assume hard

particles that can neither be deformed nor overlap on the
substrate. This assumption does not hold for systems
such as soft colloidal particles [14], macromolecules like
proteins [5], or complexes that can be forced into con-
formations with different effective sizes [15]. While the
mechanical properties of soft particle systems are well
studied [16], their adsorption-desorption kinetics have not
been characterized. To explore this question, we analyze a
minimal model with particles of finite stiffness ε binding to
a one-dimensional (1D) substrate; see Fig. 1. Our model
recovers the hard particle kinetics in the ε → ∞ limit but
demonstrates that the new parameter significantly enriches
the kinetic behavior. Notably, softness can lead to non-
monotonic filling, where an initially empty substrate fills
to a high “cramming density” ρcr before relaxing to the
equilibrium density ρeq < ρcr. While this behavior may

seem counterintuitive, it does not violate thermodynamic
principles.
Our model is a generalization of the 1D car parking

model [11,12] to soft particles. Models of this type are
directly applicable to experimental systems with linear
topology, and they also serve as a tractable theoretical
framework to capture general kinetic phenomena [1]. For
instance, 1D models show how the extremely slow relax-
ation of jammed systems [11,12] arises from the growing
number of rearrangements required to make space for
additional particles [13]. The same physics applies also
in higher dimensions, e.g., to describe the slow densifica-
tion of vibrated granular materials [13,17–19]. We discuss
general implications of our 1D results further below.
Model.—Our model, illustrated in Fig. 1, describes the

random adsorption and desorption of soft particles on a
1D substrate. The particles are assumed to have a finite
interaction range set to 1, defining the length unit. Isolated
particles adsorb at the bare rate rþ per unit length and
desorb with rate r−. We are interested in the regime in
which the rate ratio

r ¼ rþ=r− ¼ eμ ð1Þ

is large, such that adsorption and desorption operate on
very different time scales and a high equilibrium density is

r_ r+ r+e-ϕ(x)

x 

ϕ(x) 

ε

1
x x 

FIG. 1. One-dimensional adsorption-desorption model for soft
particles. Overlapping adsorptions that require deformation are
allowed but slowed down by the Boltzmann factor of the
interaction energy φðxÞ, which depends linearly on the center-
to-center distance x. In the limit ε → ∞ the hard particle model
is recovered.
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ultimately reached. For later convenience, Eq. (1) expresses
r also in terms of the chemical potential of the non-
interacting system, μ (throughout this Letter we set kBT ¼ 1
by choice of energy unit). A soft particle can attach even if
it partially overlaps with its neighbor(s). We assume that
overlaps are associated with an interaction φðxÞ, where x
denotes the center-to-center distance of adjacent particles.
We primarily consider a potential that increases in pro-
portion to proximity,

φðxÞ ¼
�
εð1 − xÞ for x ≤ 1;
0 for x > 1;

ð2Þ

but also test to what extent the kinetic behavior depends
on the shape of φðxÞ. We note that potentials with finite
stiffness ε can also serve as effective descriptions for hard
particles that fluctuate between internal states with different
effective lengths.
The interaction (2) modulates the reaction rates. An

adsorption event alters the total interaction energy by
UðxL;xRÞ¼φðxLÞþφðxRÞ−φðxLþxRÞ, with the center-
to-center distances to the left and right neighbors, xL and
xR. Detailed balance requires that the modulated rates ~rþ,
~r− have the ratio eμ−U. As we do not seek to describe a
specific experimental system, but rather to characterize
generic effects of softness on adsorption-desorption
kinetics, we can simply choose ~r− ¼ r− and

~rþðxL; xRÞ ¼ rþe−UðxL;xRÞ: ð3Þ
The Supplemental Material [20] discusses the effects of
distributing the Boltzmann factor between adsorption and
desorption.
Our model does not explicitly include lateral diffusion,

although an effective form of lateral transport arises via
desorption and readsorption [22]. We analyze the full
stochastic kinetics of our model with simulations using
the Gillespie method [23]. We also use a mean field
description that characterizes the state of the system by
the line density of particle spacings, Vðx; tÞ, which obeys

∂
∂t Vðx; tÞ ¼ 2

Z
∞

x
dyVðy; tÞ~rþðx; y − xÞ − 2r−Vðx; tÞ

− Vðx; tÞ
Z

x

0

dy~rþðy; x − yÞ

þ r−

Z
x

0

dy
Vðy; tÞVðx − y; tÞ

ρðtÞ ð4Þ

and

R
∞

0
dx xVðx; tÞ ¼ 1 (conservation of space). Since the

number of voids equals the number of particles, the total

particle density is ρðtÞ ¼
R

∞

0
dxVðx; tÞ. Equation (4)

describes the creation and destruction of voids of size x
via adsorption within larger voids, desorption of a bound-
ing particle, adsorption within the void, and the fusion of

two smaller voids. In the last term of Eq. (4) the two-void
density is approximated by the product of one-void
densities, truncating the hierarchy of mean field equations
at lowest order. Equation (4) recovers the mean field
description of the car parking model [12] in the limit
ε → ∞. For t → ∞, the equilibrium distribution VeqðxÞ ∝
e−αx−φðxÞ is reached [20]. The equilibrium density can
exceed unity since particles can overlap. See Ref. [20]
for a comparison of the mean field and full model, the
lattice equivalent of Eq. (4) used for all simulations, and a
discussion of finite size effects.
Qualitative behavior.—Figure 2 characterizes the filling

kinetics of an initially empty substrate. The time evolution
of the total particle density ρðtÞ is shown in Fig. 2(a) for
different stiffnesses ε, including the hard-core limit ε → ∞.
On the logarithmic time axis, the two time scales 1=rþ and
1=r− roughly divide the kinetics into three separate stages.
(i) Essentially unhindered adsorption for t < 1=rþ with
ρðtÞ ∼ t independent of ε since interactions play only a
minor role initially. At the end of this stage, most voids
large enough for nonoverlapping adsorption are exhausted.
(ii) For 1=rþ < t < 1=r−, hard-core particles are in a
jamming stage: Their density remains essentially constant
at a plateau of ρjam ≈ 0.748, the Rényi limit [9]. In contrast,
the density of soft particles keeps increasing, albeit only
logarithmically, ρðtÞ − ρjam ∼ logðtÞ. (iii) In the third stage,
t > 1=r−, desorption becomes relevant and all systems
relax to their equilibrium density ρeq. However, the relax-
ation behavior changes dramatically with ε. Whereas the

(a)

(b) (c)

FIG. 2 (color online). Soft particle adsorption-desorption
kinetics. (a) Density evolution for different stiffnesses ε (with
μ ¼ 20). Symbols: stochastic simulations; transparent overlays:
cramming dynamics of Eq. (6). Vertical lines indicate the
adsorption and desorption time scales. (b),(c) Gap size distribu-
tion for ε ¼ 25 at the time points marked in (a). At the onset of
cramming, Vðx; tÞ is similar to the jammed distribution V jamðxÞ.
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density of hard-core particles approaches ρeq extremely
slowly from below, soft particles can either reach ρeq from
below, arrive directly at ρeq at the onset of the third stage, or
display a density overshoot before rapidly relaxing to ρeq
from above.
The surprisingly rich kinetic behavior of Fig. 2(a) calls

for a clarification of the underlying physics. How does the
logarithmic behavior in stage (ii) arise from the softness
and how generic is it? Under which conditions does
nonmonotonic filling occur in an adsorption-desorption
process that obeys detailed balance? Why is the relaxation
to thermodynamic equilibrium much faster for soft
particles? We address these questions in the remainder
of this article by combining numerical analysis with
analytical arguments.
Cramming.—The physics underlying the logarithmic

regime (ii) of Fig. 2(a) is revealed by Fig. 2(b), which
shows three consecutive snapshots of the void distribution
Vðx; tÞ. At the onset of stage (ii), Vðx; tÞ is similar to
the known jammed distribution V jamðxÞ for irreversibly
adsorbed hard particles [24],

V jamðxÞ ¼ 2

Z
∞

0

dt t exp

�
−ðx − 1Þt − 2

Z
t

0

du
1 − e−u

u

�

ð5Þ
[for 1 ≤ x < 2, while V jamðxÞ ¼ 0 otherwise]: Both
distributions display a dropoff for large gaps, while voids
x < 1 are suppressed in Vðx; tÞ and are entirely forbidden
in V jamðxÞ. With increasing time, the dropoff in Vðx; tÞ
progressively moves to smaller x as the largest available
voids are filled (creating new voids with x < 1).
This behavior indicates that the system’s memory of the
jammed configuration generated in stage (i) governs the
“cramming” dynamics during stage (ii).
We quantify this physical picture by considering the

Langmuir kinetics of reversibly filling the gaps in a
jammed configuration. If Pðx; tÞ denotes the probability
that a void of size x remains unfilled at time t, we have
Pðx; tÞ ¼ ½γþðxÞe½−ðγþðxÞþr−Þt� þ r−�=½γþðxÞ þ r−�, where
γþðxÞ ¼

R
x
0 dy~rþðy; x − yÞ is an effective filling rate that

combines all attachment possibilities. Neglecting multiple
filling, this yields the cramming dynamics

Vcrðx; tÞ ¼ Pðx; tÞV jamðxÞ þ 2

Z
∞

x
dx0½1 − Pðx0; tÞ�

× V jamðx0Þ
~rþðx; x0 − xÞ

γþðx0Þ
; ð6Þ

which can be considered an approximate solution to Eq. (4)
for the cramming stage [20]. This distribution and the

corresponding density ρcrðtÞ ¼
R

∞

0
dxVcrðx; tÞ are dis-

played as semitransparent lines in Fig. 2, showing that
Eq. (6) captures the kinetics of stage (ii) very well. It also

explains the logarithmic increase of ρðtÞ: Approximating
γþðxÞ by its largest contribution, the drop in Vðx; tÞ moves
as ΔxdrðtÞ≔2 − xdrðtÞ ≈ lnðrþtÞ=ε for our linear potential
[20]. Given that the density is related to the area under the
void size distribution, this yields [20]

ΔρðtÞ ≈ V jamð2Þ lnðrþtÞ=ε; ð7Þ

which rationalizes the logarithmic time dependence and
predicts how the dynamics slow down with increasing
stiffness ε.
Nonmonotonic density.—Remarkably, ρðtÞ can tran-

siently exceed the equilibrium density. We now show that
this is a result of desorption erasing the memory of stage
(i) that was preserved during stage (ii). We first note that
the density ρcrðtÞ obtained above (by assuming that only
cramming is reversible while the underlying jammed
configuration is preserved) saturates towards a value ρ∞cr ,
which can be smaller than the equilibrium density ρeq [the
blue line in Fig. 2(a)], or can exceed it (the green line).
Figure 3(a) shows that the parameter regime where
ρ∞cr > ρeq is virtually identical with the regime where the
maximal density ρmax exceeds ρeq. Thus, a nonmonotonic
density ρðtÞ occurs whenever suppressing rearrangements
leads to a larger equilibrium density than allowing for them.
To elucidate the minimal requirements for nonmonotonic

filling and to study the phenomenon from the perspective
of nonequilibrium thermodynamics, it is useful to consider
the case of dimers on a discrete lattice. For soft dimers,
which can overlap by a single site at the energetic cost ε=2,
nonmonotonic filling occurs in a similar parameter range
as in the continuum model; see Fig. 3(b). In fact, the
boundaries in (ε; μ) space can be understood with a simple
argument: A density overshoot is possible only if single
overlaps occur faster than desorption and simultaneous
overlaps with both neighboring particles are rare, which
translates into the condition [20]

ε=2 < μ < ε: ð8Þ
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10 20 30

20

40

60

10 20 30

20

40

60

μμ

εε

quasicontinuum dimers

1

1.1

1

1.1

ρ∞ ρ
ρ ρ

FIG. 3 (color online). Phase diagram in (ε; μ) space for the
density overshoot with (a) quasicontinuum particles and (b) soft
dimers. The overshoot is the ratio of the maximum and the
equilibrium densities ρmax=ρeq observed numerically (color
coded). Overlayed are contour lines of ρ∞cr =ρeq, where ρ∞cr is
the asymptotic cramming density derived from Eq. (6). Dashed
lines indicate the regime of Eq. (8).
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This regime is indicated by the dashed lines in Fig. 3.
Interestingly, this regime also encompasses the nonmono-
tonic region of the continuum model, showing that Eq. (8)
provides a necessary (but not sufficient) condition for the
class of models that we consider.
Why can a density overshoot occur for soft but not for

hard particles? One way to address this question is to
consider the large-ε behavior of the lattice equivalent of
Eq. (4). After the initial filling stage, the only relevant
components of the void density vector for soft dimers are
the ones for overlapping dimers, for adjacent dimers, and
for single empty sites. Space conservation then reduces the
dynamics to a two-dimensional first-order ordinary differ-
ential equation, which permits nonmonotonic behavior (see
the Supplemental Material [20] for details). However, in the
limit ε → ∞, the dynamics become effectively one dimen-
sional, and hence monotonic, since the overlapping dimer
degree of freedom is lost. Thus, the mathematical mecha-
nism within the mean field description is dimensional
reduction.
Nonequilibrium thermodynamics.—Figure 4 shows the

filling dynamics ρðtÞ of dimers together with two thermo-
dynamic quantities, S and H. The time-dependent entropy
SðtÞ ¼ −ð1=LÞPnpnðtÞ logpnðtÞ can be computed via
the occupation probabilities pnðtÞ of all configurations of
the system (we measure the system size L in units of the
particle size). It displays a nonmonotonic behavior, not
only for soft dimers (the dashed line) but also for hard
dimers (the solid line), which is not surprising since our
system is initially far from equilibrium. That SðtÞ first rises
and later decreases during relaxation is consistent with the

evolution from a single initial state (empty) through
disordered intermediate states to a highly ordered equilib-
rium state (relevant stages are sketched in Fig. 4). However,
the relative entropy HðtÞ ¼ ð1=LÞPnpnðtÞ log½pnðtÞ=peq

n �
(with respect to the equilibrium state) must monotonically
decrease for a system described by a discrete master
equation that obeys detailed balance [25]. Figure 4 shows
that the density overshoot is compatible with this funda-
mental theorem.
Relaxation kinetics.—Figure 2 indicated that relaxation

to equilibrium is faster for soft particles than for hard.
To clarify whether the relaxation behavior is qualitatively
different, we examine how jρðtÞ − ρeqj approaches zero in
Fig. 5 (and in more detail in the Supplemental Material
[20]). For dimers, the relaxation behavior is actually the
same for hard and soft particles, due to a particle-hole
symmetry [20]: Both jamming (for hard particles) and
cramming (for soft particles) lead to configurations with
“defects,” which undergo a diffusion-annihilation process.
For hard particles, the defects are isolated, unoccupied
lattice sites, and diffusion occurs via desorption of an
adjacent particle followed by immediate adsorption of a
particle into the gap [22]. The progressive dilution of
defects leads to the power law behavior jρðtÞ − ρeqj ∼ t−1=2,
which holds until the finite defect creation rate balances
the diffusion-annihilation process. For soft particles, the
defects are sites with double occupancy, which by a similar
mechanism lead to the same power law behavior and even a
“mirror symmetry” of the relaxation curve around density
one [20].
This symmetry is broken when the particle size is

increased to k-mers with k > 2 (since reactions then occur
between defects of different sizes). Figure 5 shows that
for hard particles the relaxation behavior becomes slower
as k increases, while it becomes faster for soft particles.
The scaling approaches logarithmic behavior in the limit
k → ∞ for hard particles [11,12], while it approaches
exponential behavior for soft particles. Qualitatively, this
is explained by the fact that the soft interaction “guides”
attaching particles to the most favorable positions (reducing
the entropic barrier for the rearrangements required for
equilibration). Other shapes of the interaction potential lead
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while it becomes faster for soft particles (ε ¼ 36).

PRL 115, 088301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

21 AUGUST 2015

088301-4



to the same behavior as long as the repulsion is sufficiently
soft [20].
Discussion.—We have shown that the adsorption-

desorption kinetics of soft particles differs fundamentally
from that of hard particles in at least three aspects: (i) the
jamming behavior, with a gradual density increase instead
of the Rényi plateau, (ii) a density overshoot, which can
occur only for soft particles, on a time scale set by the
desorption rate, and (iii) the relaxation behavior, which for
soft particles becomes faster with increasing particle size
(on a lattice), while hard particles show the opposite trend.
We performed our analysis for a minimal model and
showed that our qualitative conclusions are not sensitive
to details such as the precise shape of the repulsive
interaction potential and the way in which it affects the
kinetic rates.
Models within this class are directly relevant in bio-

physics, for instance, in describing the binding of dimeric
kinesins to microtubules [26] (where the softness stems
from the ability to bind with either one or two head
domains) or the assembly of nucleosome arrays [15] (where
the softness arises from transient, thermally induced DNA
unwrapping). While our analysis was limited to 1D sub-
strates, we expect that much of the qualitative phenom-
enology carries over to 2D substrates. An interesting 2D
experimental system is protein adsorption from blood
plasma, which can show nonmonotonic surface density
[27–29]. This effect is not well understood but is usually
interpreted in a two-species scenario where a fast-binding
protein is replaced by a slower but stronger-binding
competitor. Our findings suggest that even a single soft
protein species could generate nonmonotonic densities.
Another field of application is the physics of vibrated

granular materials. The sluggish kinetics of these systems is
nonadiabatic and shows signs of broken ergodicity [30,31].
One-dimensional models have already been useful to
describe certain aspects of these kinetics phenomenologi-
cally [13,32]. The introduction of an effective soft-core
interaction will provide a valuable new dimension in the
parameter space of such phenomenological descriptions.
More generally, it will be interesting to explore how the rich
adsorption-desorption kinetics of soft particles couples
to other kinetic processes. For instance, it should modify
the collective dynamics of molecular motors, reaction-
diffusion processes that involve a lower-dimensional sub-
strate, and substrate-guided self-assembly processes.
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